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Abstract. Recently, it has been demonstrated that speech recognition
systems are able to achieve human parity. While much research is done for
resource-rich languages like English, there exists a long tail of languages
for which no speech recognition systems do yet exist. The major obstacle
in building systems for new languages is the lack of available resources.
In the past, several methods have been proposed to build systems in
low-resource conditions by using data from additional source languages
during training. While it has been shown that DNN/HMM hybrid se-
tups trained in low-resource conditions benefit from additional data, we
are proposing a similar technique using sequence based neural network
acoustic models with Connectionist Temporal Classification (CTC) loss
function. We demonstrate that setups with multilingual phone sets ben-
efit from the addition of Language Feature Vectors (LFVs).
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1 Introduction

In recent years, the use of artificial neural networks (ANNs) has lead to dramatic
improvements in the field of automatic speech recognition (ASR), lately achiev-
ing human parity [42, 27]. ANNs are being used as part of the pre-processing
pipeline, e.g., for dimensionality reduction [13], or as part of the acoustic model in
DNN/HMM hybrid systems. Latest developments include sequence based ANN
based setups with Connectionist Temporal Classification (CTC) [9] loss function.
Such systems do not require certain types of resources traditional model do, like
time-aligned labels, HMMs and cluster trees. Popular network topologies to use
in such setups are bi-directional Long-Short Term Memory (LSTM) networks
[14].

While proposed back in 2006, this method has gained popularity quite re-
cently, due to the availability of increased computing power that enabled us-
ing large amounts of training data. One of the main advantages of CTC based
systems over conventional speech recognition systems is that they are able to



capture temporal dependencies by themselves. While HMM based systems use
context-dependent states to mitigate the error made by the Markov assump-
tion (the current state only depends upon the previous state), CTC based sys-
tems learn to model context implicitly by the use of Recurrent Neural Networks
(RNNs).

But CTC based models are more sensitive to the amount of available training
data. This is especially problematic if only a limited amount of data is available
during training. In this work, we are proposing a method for adding data from
additional source languages. Similar to methods proposed for DNN/HMM based
systems, we use data from multiple languages during training. To train our setup
truly multilingual, we use a global phone set combining the phone sets of all
source languages. In addition, we demonstrate that the recognition performance
can be improved by the addition of Language Feature Vectors (LFVs) [23]. By
applying this proposed method, multilingual systems outperform monolingual
systems trained on the target language only.

This paper is organized as follows: In the next Section, we provide an overview
of related work in the field. We describe our approach in Section 3, followed by
the description of the experimental setup in Section 4. Section 5 contains the
results and we conclude this paper in Section 6, where we also provide an outlook
to future work.

2 Related Work

2.1 GMM Based Multi- and Crosslingual Systems

Prior to using neural networks as part of speech recognition systems, the use
of GMM/HMM based systems was common. The problem of training systems
multi- and crosslingually has been addressed in the past to handle data sparsity
[41, 32]. Techniques for adapting the cluster tree were proposed [33], but methods
for crosslingual adaptation exist as well [36].

2.2 Multilingual DBNFs

Building DNN-based systems in low resource conditions is challenging, especially
because DNNs are a data-driven method with many parameters to be trained.
Hence, a large amount of data is required for the model to generalize. Several
methods have been proposed to use data from additional source languages. The
first step is to pre-train models unsupervised, which is language independent
[38]. For fine-tuning, several approaches exist to incorporate multilingual data.
One possibility is to share the hidden layers between languages, but use language
specific output layers [8, 29, 12, 39]. Instead of having independent output layers,
block softmax can also be applied [11]. By partitioning the output layer or using
language specific output layers, the systems use separate phone sets for each
language instead of a global phone set. In general, training DNNs using data
from multiple languages in parallel can be considered as a form of multi-task
learning [5, 22].



2.3 Neural Network Adaptation

A common method to adapt neural networks to di↵erent speakers is the use of
i-Vectors [28] or Bottleneck Speaker Vectors (BSVs) [15]. By using such vec-
tors, speaker adaptive neural networks [21] can be built. These low dimensional
vectors encode speaker peculiarities which enable the network to adapt to dif-
ferent speaker characteristics. These methods demonstrate that neural networks
benefit from additional input modalities.

Similar to BSVs, we have shown that feature augmentation can also be used
to adapt ANNs to di↵erent languages when trained multilingually. Providing the
language identity information using one-hot encoding leads to improvements [25],
but does not provide any language characteristics to the network. Language Fea-
ture Vectors (LFVs) [23, 24] have shown to encode such language peculiarities,
even if the LFV net was not trained on the target language.

2.4 CTC based systems

While originally proposed in 2006 [9], CTC-based systems are becoming more
popular these days. Systems can be trained using either phones or graphemes as
labels, or jointly together [6]. Recently, a setup being trained directly on words
has been proposed [34]. The notion of multi-task learning can also be applied to
CTC-based setups [16, 18, 26].

3 Language Adaptive Multilingual CTC

We aimed at training our setup multilingually, opting for using phones over
characters. By merging pronunciation dictionaries from multiple languages, we
created a global phone set. While there are many approaches of training CTC sys-
tems directly on characters and omitting the pronunciation dictionary, we used
phones as targets in this first approach because characters or groups of charac-
ters are pronounced very di↵erently between languages, e.g., “th” in English or
“sch” in German. Being language independent, phones are always pronounced
in the same way, but eventually with a language specific twang. This might in-
troduce classification errors as the network might have di�culties identifying the
correct phone independent of the language. Another issue might have been lan-
guage dependent phone contexts. While HMM-based systems in general su↵er in
performance when using a multilingual phone set, special techniques have been
proposed to adapt the set of context-dependent states (see Section 2.1). CTC-
based systems potentially do not su↵er as much from this problem because all
phone contexts are learned implicitly by the network. In order to compensate for
language dependent peculiarities, we used LFVs which have shown to improve
the performance of multilingual HMM-based systems.

We based our setup on Baidu’s Deepspeech 2 architecture [4]. The network
topology is shown in Figure 1. The input features were first processed by 2 2D
convolution layers. Convolutional Neural Networks (CNNs) are based on the



idea of Time-delay Neural Networks (TDNNs) [40]. By applying 2D convolution
on the spectrogram, these 2D TDNN layers learn filters to extract features in
both the frequency and time dimension. We added LFVs to the output of the
convolution layers as input to the bi-directional LSTM [14] layers by appending
them to the feature vector. The output layer was a fully connected feed-forward
layer with softmax activations. In a series of experiments, we evaluated di↵er-
ent hidden layer sizes and di↵erent amounts of hidden layers to determine the
optimal hyper parameter configuration.

During decoding / testing, we did not apply any advanced techniques like
WFST decoding [20] or incorporated an external language model. Instead, we
used a naive argmax decoding and computed the label error rate (LER), which
is similar to the phone error rate (PER), but also accounts for incorrect word
separations.

2D CNN /
TDNN Layer

Bi-directional LSTM Layer
Output
Layer

LFV

Fig. 1. Network layout, based on Deepspeech2 configuration. LFVs are being added
after final convolution layer.

4 Experimental Setup

We based our experiments on the Euronews corpus [10]. It features TV broadcast
news recordings from 10 languages. For each language, 70h of data is available,
as shown in Table 1. We filtered utterances being shorter than 1s and removed
utterances with long phonetic transcripts, because the CUDA implementation
supported a maximum label length of 639 symbols3. We used only half of the
available data per language (approx. 35h) to simulate a resource-constraint task

3 see: https://github.com/baidu-research/warp-ctc, accessed 2017-04-13



and set aside 10% for testing. We trained systems for both English and German,
as well as a system trained jointly on data from both languages.

Table 1. Overview Euronews Corpus

Language Audio Data # Recordings

Arabic 72.1h 4,342
English 72.8h 4,511
French 68.1h 4,434
German 73.2h 4,436
Italian 77.2h 4,464
Polish 70.8h 4,576
Portuguese 68.3h 4,456
Russian 72.2h 4,418
Spanish 70.5h 4,231
Turkish 70.4h 4,385

Total 715.6h 44,253

We used MaryTTS [30] to create pronunciations for words contained in the
transcriptions. MaryTTS supports multiple languages, with each language hav-
ing their own set of symbols representing phones. While most of the symbols rep-
resent the same phones across languages, we manually mapped symbols which
did not match to ensure same phones shared the same symbol. For matching the
symbols, we used the definitions of articulatory features embedded in MaryTTS’
language definition files. This allowed us to derive a global phone set. Addi-
tionally, MaryTTS used special marks to indicate long vowels. As preliminary
experiments indicated, the network had di�culties distinguishing between short
and long instances of the same vowel. Hence, we discarded marks indicating long
vowels. The phone count after and prior to mapping is shown in Table 2. Merging
the sound inventory of both languages resulted on a set of 56 phones.

Table 2. Size of di↵erent phone sets

Language Phone Set Size

English MaryTTS 42
Mapped 39

German MaryTTS 59
Mapped 48

Combined Merged 56

To extract acoustic input features, we used the Janus Recognition Toolkit
(JRTk) [3], which features the IBIS single-pass decoder [35]. We used our stan-



dard pre-processing pipeline consisting of 40 dimensional log Mel scaled coe�-
cients, as well as 14 dimensional tonal features (FFV [17] and pitch [31]). Adding
tonal features even for non-tonal languages has shown improvements [19]. We
extracted the features using a window size of 32ms and a frame shift of 10ms.
To train the networks, we used PyTorch [1], which provided Python bindings to
Torch [7], as well as warp-ctc [2] for computing the CTC loss during network
training. The networks were trained using stochastic gradient descent (SGD)
with Nesterov momentum [37], a learning rate of 0.0003 and momentum of 0.9.
Mini-batch updates with a batch size of 20 and batch normalization were used.
Annealing was applied to the learning rate every epoch with a value of 1.1. To
prevent gradients from exploding, a max norm constraint of 400 was enforced.
During the first epoch, the network was trained with utterances sorted ascending
by length.

5 Results

In this section, we first present monolingual results as baseline, followed by the
evaluation of di↵erent hyper parameter configurations. We then combine data
from multiple languages to train a multilingual system and also evaluate adding
LFVs to our setup.

5.1 Baseline

As baseline experiment, we trained monolingual systems on English and German
using 4 LSTM layers with 400 neurons each. We evaluated the mapping of phones
from MaryTTS to actual phone targets of our system. Table 3 shows the results.
Using the original phone set from MaryTTS does result in the highest LER, for
both English and German.

Table 3. Monolingual results on test set showing the label error rate (LER)

System Phone Set LER

English MaryTTS 20.4%
English Mapped 19.0%

German MaryTTS 16.0%
German Mapped 15.5%

5.2 Multilingual Experiments

Next, we trained networks multilingually and also evaluated di↵erent network
hyper parameters. While we kept the configuration of the 2 2D CNN / TDNN
layers identical, we varied the parameters of the LSTM layers. For reference, we



also included corresponding results of a monolingual system trained on English.
As shown in Table 4, we observed gains from increasing the layer size. But
we could not increase the size of the LSTM layers beyond 1,000 neurons per
layer because of limitations in GPU memory. Adding an additional layer did not
improve the LER.

Table 4. Multilingual results showing the label error rate (LER) for di↵erent network
configurations

LSTM layer size # LSTM layers LER ML LER EN

350 5 19.6% –
400 4 20.0% 19.0%
400 5 19.6% –
600 4 17.3% –
800 4 16.9% 17.8%
800 5 17.0% –
1000 4 16.3% 17.7%

5.3 Language Adaptive Networks

Based on the best network configuration (1,000 nodes per layers, 4 LSTM layers),
we added LFVs after the CNN / TDNN layers and evaluated the performance
of the network for both English and German, as well as multilingually. The
results are shown in Table 5. Adding LFVs lowered the LER in all cases. After
7 epochs, the gain over the baseline was bigger on English (8% rel.), compared
to German (6% rel.). Training the nets for 70 epochs results in a slight decrease
in performance multilingual over monolingual.

Table 5. Multilingual results showing the label error rate (LER)

System Monolingual Multilingual LFV LER (7 ep.) LER (70 ep.)

English x – – 17.7% 13.1%
– x – 18.7% 14.8%
– x x 16.4% 13.5%

German x – – 14.6% 10.8%
– x – 14.0% 11.8%
– x x 13.8% 11.0%

Combined – x – 16.3% 12.9%
– x x 15.7% 12.4%



6 Conclusion

We have presented a method for training CTC based speech recognition sys-
tems multilingually. By using LFVs in addition to acoustic input features, we
could improve the recognition performance of our multilingual systems. Future
work includes the evaluation of additional language combinations and di↵erent
mixtures of training data. We also intent to use additional adaptation methods
like i-Vectors to adapt the networks to di↵erent speakers, as well as to further
optimize the network architecture and the training process.
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36. Stüker, S.: Acoustic modelling for under-resourced languages. Ph.D. thesis, Karl-
sruhe, Univ., Diss., 2009 (2009)

37. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initializa-
tion and momentum in deep learning. In: Proceedings of the 30th International
Conference on Machine Learning (ICML-13). pp. 1139–1147 (2013)

38. Swietojanski, P., Ghoshal, A., Renals, S.: Unsupervised cross-lingual knowledge
transfer in DNN-based LVCSR. In: SLT. pp. 246–251. IEEE, IEEE (2012)

39. Vesely, K., Karafiat, M., Grezl, F., Janda, M., Egorova, E.: The language-
independent bottleneck features. In: Proceedings of the Spoken Language Tech-
nology Workshop (SLT), 2012 IEEE. pp. 336–341. IEEE (2012)

40. Waibel, A., Hanazawa, T., Hinton, G., Shikano, K.: Phoneme Recognition Using
Time-Delay Neural Networks. In: ATR Interpreting Telephony Research Labora-
tories (October 30 1987)

41. Wheatley, B., Kondo, K., Anderson, W., Muthusamy, Y.: An evaluation of cross-
language adaptation for rapid hmm development in a new language. In: Acoustics,
Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE International Con-
ference on. vol. 1, pp. I–237. IEEE (1994)

42. Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., Yu, D., Zweig,
G.: Achieving Human Parity in Conversational Speech Recognition. arXiv preprint
arXiv:1610.05256 (2016)


