
Efficient Speech Transcription

Through Respeaking

Master’s Thesis

Matthias Sperber

November 5, 2012

Supervisors: Dr. Graham Neubig
Dr. Christian Fügen
Prof. Dr. Satoshi Nakamura
Prof. Dr. Alexander Waibel

Karlsruhe Institute of Technology
Department of Computer Science

Institute for Anthropomatics
Prof. Dr. Alexander Waibel

Matthias Sperber Ludwigshafen, den 5. November 2012
Münchbuschweg 30b
67069 Ludwigshafen

Erklärung

Hiermit erkläre ich, dass ich die Arbeit selbständig verfasst und nur die
angegebenen Hilfsmittel verwendet habe.

(Matthias Sperber)

Efficient Speech Transcription Through
Respeaking

Matthias Sperber

November 5, 2012

Abstract

In this thesis, we propose a method for efficient speech transcription through
respeaking. Speech is segmented into smaller utterances using an initial
automatic transcript. Respeaking is performed segment by segment, while
confidence filtering helps save supervision effort. We conduct detailed exper-
iments comparing speaking vs. typing, the effect of sequential vs. confidence-
ordered supervision, and respeaking word error rate on correction efficiency.
Our results demonstrate that the proposed method can not only outperform
typing in terms of correction efficiency, but is also much less demanding for
the respeakers than traditional methods, and consequently helps keep costs
down.

Effizientes Transkribieren von Sprache durch
Nachsprechen

Matthias Sperber

5. November 2012

Zusammenfassung

Diese Arbeit untersucht, wie gesprochene Sprache durch Nachsprechen ef-
fizient transkribiert werden kann. Eine Sprachaufnahme wird anhand eines
initialen, automatischen Transkripts in kleinere Segmente unterteilt. Mit
einem Konfidenzfilter werden diejenigen Segmente identifiziert, deren initiales
Transkript einer Korrektur bedarf. Die zu korrigierenden Segmente wer-
den dann nachgesprochen, ein Spracherkenner erzeugt ein neues Transkript.
Dieses ist aufgrund eines sprecher-adaptierten Spracherkenners sowie gün-
stigeren Aufnahmebedingungen in der Regel deutlich besser als das initiale
Transkript, gleichzeitig ist diese Korrektur-Methode deutlich schneller als das
Eintippen über die Tastatur. Schließlich werden die initiale und die durch
Nachsprechen erzeugte Hypothese noch kombiniert, sodass idealerweise aus
beiden Hypothesen jeweils genau die korrekten Wörter für das finale Tran-
skript gewählt werden.

Im Unterschied zur weit verbreiteten Methode, in der eine Sprachauf-
nahme nicht segmentiert wird, sondern als ganzes ohne Pause nachzusprechen
ist, ist unser Ansatz weitaus einfacher durchzuführen und erfordert kein
spezielles Training. Dadurch ist unsere Methode kostengünstig einsetzbar.

Mithilfe eines effizienten, eigens zu diesem Zweck entwickelten Tools
führen wir detaillierte Experimente durch, um die Korrektur durch Nach-
sprechen oder Tippen zu vergleichen, und den Einfluss der Wortfehlerrate
beim Nachsprechen auf die Effizienz der Korrektur zu analysieren. Weit-
erhin vergleichen wir sequentielle Korrektur und Korrektur in Reihenfolge
der Konfidenzen. Unsere Ergebnisse zeigen, dass unsere Methode des
Nachsprechens effizienter als Tippen sein kann, wobei dies von Sprecher zu
Sprecher unterschiedlich ist. Auch der Einsatz der Konfidenzen sowie die
Hypothesen-Kombination bewirken deutliche Effizienz-Steigerungen.

Schließlich zeigen wir das weitere Steigerungspotenzial der Effizienz durch
bessere Sprecher mithilfe von simulierten Experimenten auf, und diskutieren
die Möglichkeit, von Segment zu Segment zu entscheiden, ob die Korrektur
durch Nachsprechen oder Tippen geschehen sollte.

Acknowledgements

I would like to thank my supervisors Christian Fügen and Graham Neubig
for the advice and the many fruitful discussions that helped me carry out this
project. Many thanks to Professor Alexander Waibel for providing me with
the great opportunity of working on my thesis in cooperation with the Nara
Institute of Science and Technology, as well as his supervision and his inter-
est and support for my research. My sincere thanks go to Professor Satoshi
Nakamura who welcomed me at his laboratory and very generously provided
for everything I needed to accomplish my goals. I would furthermore like to
thank Sakriani Sakti and Tomoki Toda for their helpful suggestions.

I am very grateful to all my fellow students, especially Michael Heck and
Keigo Kubo. It was fun working together as a team. Many thanks also to
Manami Matsuda for her big effort in supporting my stay in Japan, and Hi-
roaki Shimizu who let me stay at his house when I had no place else. I am
grateful to all the other members of the laboratory who welcomed me as part
of the group and made me feel quite at home in Japan.

Last but not least, my sincere thanks go to my dear fiancée and to my family
for their love, support, and encouragement, making all of this possible in the
first place.

vii

Contents

1 Introduction 1

2 Background 3
2.1 Automatic Speech Recognition 3
2.2 Acoustic Model Adaptation 5
2.3 Transcription . 6
2.4 Respeaking in the Television Industry 7
2.5 Error Correction for Speech Input 8

3 The Proposed Method 11
3.1 Overview . 11
3.2 Preparative Step – Enrollment 11
3.3 Step 1 – Initial Recognition 12
3.4 Step 2 – Segmentation . 12

3.4.1 Segmentation Algorithm 13
3.4.2 Tuning . 15
3.4.3 On Re-Decoding . 17

3.5 Step 3 – Segment Confidence Estimation 17
3.5.1 Word-level Confidence Measures 17
3.5.2 Segment-level Confidence Measures 18

3.6 Step 4 – Respeaking . 19
3.6.1 Supervision Strategies 19
3.6.2 Graphical User Interface 19

3.7 Step 5 – Hypothesis Combination 21

4 Evaluation 23
4.1 Setup & Data . 23
4.2 Speaker Adaptation . 24
4.3 Segmentation . 25
4.4 Confidences . 26

4.4.1 Evaluation: Word Confidence 26

ix

4.4.2 Evaluation: Segment Confidence 29
4.4.3 Discussion . 30

4.5 Hypothesis Combination . 31
4.6 Overall Performance . 31

4.6.1 Word Error Rates . 31
4.6.2 Correction Effort . 32
4.6.3 Analysis of Efficiency 34
4.6.4 Simulating a Better Speaker 34
4.6.5 Respeaking Versus Typing 35

5 Conclusion 39

6 Future Perspectives 41

Bibliography 43

Chapter 1

Introduction

While the transcription of speech is a necessity for an increasing number of
applications, often quality requirements are high and cannot be met even
by state-of-the-art automatic speech recognition (ASR) technology. On the
other hand, manual transcriptions are very expensive. The combination of
human skills and speech technology can help ameliorate these problems by
providing a good trade-off between transcription quality and cost. We there-
fore formulate the goal of enabling efficient transcription of speech by com-
bining ASR technology and manpower.

The advantages of ASR technology are its speed, low costs, and the ability
to work without ever getting tired. Human transcribers, on the other hand,
are expensive and suffer from fatigue, but unlike ASR technology can obtain
a real understanding of spoken language, are very strong at inferring from
context, as well as at segmenting the individual words, or words and back-
ground noise. As a result, humans are much better at choosing the correct
among several plausible hypotheses, perform effective error recovery, and are
less influenced by other disturbing factors.

To work towards this goal of effectively combining the strengths of both,
we investigate the efficiency of respeaking as a method for speech transcrip-
tion. We define respeaking as a person simultaneously repeating the same
speech that another person is uttering. The respoken utterances can then au-
tomatically be transcribed using ASR. Since the data entry rate of speech is
much higher than that of typing on a keyboard [Moore et al., 2004], the tran-
scription task can be considerably sped up by using respeaking. While the
quality of the resulting transcript depends on the recognition accuracy, this
accuracy can be expected to be much better than for recognizing the origi-
nal speaker, since we can adapt the system towards the particular respeaker,
and moreover assume better recording quality. In this way, respeaking can
provide a good trade-off between transcription effort and accuracy.

1

Chapter 1. Introduction

The television broadcast industry has already identified respeaking as a
promising way to create live-subtitles for their programs. In fact, respeaking
has now largely replaced the previously predominant method of stenogra-
phy for this task [Evans, 2003,Prazak et al., 2012]. However, respeaking in
real-time is very demanding for the speaker, requires extensive training, and
often results in a summary rather than a faithful transcript. We attempt
to overcome these limitations by dividing the speech into smaller segments,
based on the initial transcript. Instead of respeaking all speech to be rec-
ognized, as in traditional methods, we select only some of the segments to
be respoken based on confidence measure estimates. Further improvement
is achieved by combining the hypotheses of the respeaker and the original
speaker. The presented approach is not designed for use in a live setting,
but rather to be applied as a post-processing step. It is “friendly” to the
respeaker, as he no longer has to hurry to keep up with the original speaker.
Consequently, the resulting transcripts stay closer to the original wording,
and respeaking requires less training and can be executed for longer periods
of time without a break than with traditional methods. We present results
from experiments by three respeakers, as well as a simulation. The results
demonstrate that our method is fast and more efficient than transcribing via
typing or more traditional respeaking techniques, provided the speaker has
a good performance in terms of recognition word error rate (WER).

2

Chapter 2

Background

In this chapter, we present background information that will be helpful for a
thorough understanding of the succeeding chapters. We first give an overview
over modern approaches to ASR, and then review some of the literature re-
lated to respeaking and speech transcription.

2.1 Automatic Speech Recognition
Automatic speech recognition is the task of automatically transcribing some
given speech. This is helpful in many ways, such as enabling spoken com-
mands, indexing and archiving, and further processing of the transcript such
as by a machine translation system. In many of these use cases, the manual
creation of transcripts is much too costly, leaving only automatic or semi-
automatic approaches as feasible options. Yet, ASR is a highly complex
undertaking, greatly complicated by the variability of speech, which can be
caused by different speakers, speaking styles, background noise, or for no
apparent reason. This section gives a very basic overview of how modern
approaches face these challenges.

Formally speaking, the task of a speech recognizer is to calculate ˆW =

argmaxW P(W|X), thus determining the most probable word sequence ˆW
given some speech X as input. Since it is difficult to estimate this probabil-
ity directly, it is commonly reversed by using Bayes’ theorem, yielding

ˆW = argmax

W
P(W|X) = argmax

W

P (X|W)·P (W)
P (X)

= argmax

W
P(X |W) áP(W).

(2.1)

From a practical point of view, at its core, an ASR system comprises a
decoder that tries to find the most probable of all possible word sequences.

3

Chapter 2. Background

Besides a good decoding method, one must further provide a feature rep-
resentation X for the given audio data, an acoustic model estimating the
likelihood of the word sequence P(X |W), and a language model estimating
the prior P(W).

A good feature representation is one that contains as little redundant
information as possible, keeping only what is important to recognize the ut-
tered speech. A simple standard approach involves A/D-conversion of the
audio signal, windowing, a discrete Fourier transform, and computation of
the magnitude spectrum. This spectrum can then be represented compactly
using filter banks, where using the mel-scale helps achieve a feature repre-
sentation that resembles human pitch perception. Other methods aim at
extracting even more significant information while keeping the number of
features low.

The purpose of the acoustic model is then to model the relation between
said features and spoken words. Since it is not immediately clear how to
model acoustic features for a word as a sequence of letters, an intermediate
phone-based representation can be obtained from a pronunciation dictionary.
The acoustic model then follows a probabilistic approach to account for the
variability in speech. In its basic form, every word is represented by a hidden
Markov model. The states correspond to phones that may be traversed in
temporal order. The phones are unobserved (hidden), but are modeled to
emit the observed acoustic features, with emission probabilities often mod-
eled as Gaussian mixture densities. Estimation of the model parameters is
performed by using a corpus of example utterances along with their manually
created transcripts.

The language model estimates the prior probability of a sequence of
words, that is, without considering the acoustic observation. Intuitively, it
scores a word as to how likely it is to appear in the current context, e.g.
by considering the syntax, semantics, discourse information, and so on. A
simple but surprisingly effective approach to language modeling is based on
n-grams in the following manner:

P(W) = P(w1 . . . wk) = P(w1) á
k!

i=2

P(wi|w1 . . . wi�1) (2.2)

! P(w1) . . . P(wn�1|w1 . . . wn�2) á
k!

i=n

P(wi|wi�n+1 . . . wi�1) (2.3)

Here, the joint probability of a word sequence is broken up using the
product rule, and then simplified using the assumptions that the conditional

4

2.2. Acoustic Model Adaptation

probability of every word only depends on a short history of n " 1 words.
While incorrect, this assumption along with the use of interpolation and back-
off methods makes it possible to estimate robust conditional probabilities on
available text corpora.

Finally, the decoding process, also called the search, attempts to find
the most likely hypothesis given a speech input and the previously described
statistical models. Since an exhaustive search over all possible word combi-
nations is computationally infeasible, efficient heuristics must be applied. A
common data structure to support decoding is a word lattice. The lattice can
for example be created by a beam search that keeps only promising hypothe-
ses, in order to constrain the search space. Often, words are grouped into
phone prefix trees according to pronunciation to avoid redundant computa-
tions. Another strategy of saving computation time is multi-pass decoding,
in which only a roughly constrained search space is laid out in a first pass,
which then forms the basis for a more refined search in a second pass.

When all is said and done, good evaluation metrics are needed to enable
comparison of ASR approaches. The standard measure is the word error rate
(WER), given by

WER =

S + D + I
N

(2.4)

where S, D , and I denote the minimal number of edits (specifically, the
number of substitutions, deletions, and insertions) necessary to transform the
reference transcript into the recognized hypothesis. N is the total number of
words in the reference.

2.2 Acoustic Model Adaptation
When using an ASR system to recognize speech, the performance often suffers
from the fact that the particular speaker’s voice and acoustic environment
differ substantially from that of the training data. The goal of acoustic model
adaptation is to overcome this mismatch by adapting the acoustic models to
better fit the current situation. Since the amount of available speaker-specific
data is usually rather small, a full training of new acoustic models for this
speaker is not a good option. Instead, the common approach is to train an
initial speaker-independent recognition system, and then adapt the system
by some transformation for either the model parameters or the feature vec-
tors, estimated on the adaptation data. Acoustic model adaptation can be
supervised or unsupervised, and be applied incrementally or in batch mode.
For respeaker enrollment, a method for supervised batch adaptation is appro-

5

Chapter 2. Background

priate. Depending on the amount of data, popular adaptation methods are
based on maximum a posteriori (MAP) or maximum likelihood estimations.
In this thesis, we choose the latter (see Section 3.2).

2.3 Transcription
Transcription is the task of putting spoken language into a text representa-
tion. The ultimate goal of automatic speech recognition is to enable fully
automated transcription. However, perfect accuracy is not in sight for ASR.
Moreover, modern speech recognition relies on the availability of speech tran-
scripts as training material. The question of how to efficiently create speech
transcripts with the help of human transcribers is therefore an important
research topic.

Several suggestions for efficient transcription user interfaces and work-
flows have been proposed in recent years. In [Rodriguez et al., 2007], the
goal is to create a perfect transcript, using an automatic transcript as a
starting point. Supervision is performed as a number of alternating verifica-
tion and correction steps. A user reads, and thereby verifies the automatic
transcription, until he finds an error, which he corrects. After correction,
the transcript corrected so far is used to improve the acoustic and language
model. The remaining speech is then re-transcribed, possibly improving the
results and reducing user effort. Although in this thesis no acoustic or lan-
guage model adaptation is performed based on the user corrections, it would
be reasonable to do so in the future. [Sanchez-Cortina et al., 2012] take on a
different approach, in which a user specifies a tolerable maximum word error
rate, and is then requested to correct the transcription for a series of words,
until an estimate of the word error rate reaches the predefined threshold.
Words are presented in the order of lowest confidence, to minimize the su-
pervision effort. This second approach is similar to the one investigated in
this thesis, although only typing is considered as an input method, and no
segmentation is used.

[Kubat et al., 2007] present a streamlined interface that can handle large
amounts of data, including multiple audio and video channels. The channels
are filtered for noisy and silent parts, segmented, and presented to the human
for annotation. [Huggins-Daines and Rudnicky, 2008] propose multimodal in-
put for mobile devices. Speech is used as a first input step, after which the
user can select the correct one among competing hypotheses for each word,
using touch gestures. In [Luz et al., 2008], a combination of previously de-
scribed methods is presented, along with possibilities to correct false word
segmentations, and dynamically adapting the recognition vocabulary. The

6

2.4. Respeaking in the Television Industry

authors further present a 3D visualization of a decoding lattice that can be
used in real time. All of these ideas are applicable in our respeaking scenario
as well and should be considered in future work.

In [Moore et al., 2004], the observation is made that for speech as an input
method, after accounting for error correction, the effective number of words
per minute attainable with speech recognition drops to within the range at-
tainable by an average typist. Our experiments confirm this observation to
hold for transcription efficiency only in a pessimistic scenario with an under-
performing respeaker. For transcription, [Hsu and Glass, 2009] estimate that
using efficient user interfaces, 300 words can be transcribed within 15 min-
utes, which is roughly equal to just under 2 minutes of spontaneous English
speech [Romero-Fresco, 2009]. For comparison, the transcription tool de-
veloped as part of this thesis supports speeds about three times faster for
typing, and up to five times faster for respeaking.

In contrast to the methods described above, creating transcriptions
through respeaking is an approach to optimize transcription efficiency
beyond that of typing. Respeaking requires less effort, but is also less
accurate. For example, it generally fails for words outside of a pre-defined
vocabulary. The level of faithfulness depends on the respeaker’s attitude,
although including non-speech events would require dedicated speech
commands. Creating a perfect transcript through respeaking is only possible
when using keyboard input as a back-off strategy.

2.4 Respeaking in the Television Industry
The television industry has already identified respeaking as a useful tool
for their live captioning services [Evans, 2003]. Captions are transcripts of
the speech contained in video material, and, unlike subtitles, are usually
produced in the same language as the speech. Captioning includes tran-
scription of the speech and other acoustic content, aligning it with the orig-
inal material, and presenting it simultaneously. It is helpful to enable the
deaf or hard-of-hearing to consume video material, for the silent presenta-
tion thereof, and for archiving purposes. Since many of these programs,
such as news broadcasts, are presented live, creating live captions for these
programs requires highly efficient methods. Moreover, the European Parlia-
ment made it mandatory for all public-service TV programs in the EU to be
presented with captions, further increasing the need for efficient captioning
methods [Romero-Fresco, 2009].

There are basically three approaches to captioning [Romero-Fresco, 2009].
The first method, keyboard input, is too slow for live captioning, and too ex-

7

Chapter 2. Background

pensive for transcribing shows in advance, and hence can be ruled out. The
second approach is stenography, an abbreviated symbolic writing method
that allows a trained person to type nearly as fast as a person can speak. It
is still used commonly by broadcasting companies such as BBC, but the re-
quired three-year training makes it very expensive and calls for better meth-
ods. In fact, the third method, respeaking, has already become the most
popular captioning method in the television industry. The required skills,
ranging from knowledge about captioning and interpreting skills to a basic
understanding of ASR technology, can be learned within weeks. Respeakers
are trained to create television captions in real-time and often at a WER
below 5% [Prazak et al., 2012]. To further reduce errors, script recogni-
tion [Evans, 2003] or post-correction [Homma et al., 2008] can be used. An
initial ASR transcript can be used as a visual guide for the respeaker, and
shot change detection can help improve the segmentation [Evans, 2003]. Un-
fortunately, ASR software is often only available as a black box, without
optimization for respeaking. Moreover, live captioning through respeaking
usually results in a summary rather than a faithful transcript. Recently, a
combination of respeaking and typing was introduced for correcting an au-
tomatic transcript in real-time by one person [Prazak et al., 2012]. However,
this method assumes a WER of only 10% for the initial ASR transcript,
and requires a highly skilled respeaker and frequent breaks. In contrast, the
proposed method requires no training, can be executed with fewer breaks,
and allows the respeakers to stay closer to the original wording. In addition,
none of the television-specific materials need to be relied on. However, these
advantages are achieved by compromising some transcription speed.

2.5 Error Correction for Speech Input
Advances in speech recognition technology have enabled speech to become an
important alternative to traditional input modalities that rely on a keyboard,
mouse, or touch screen. However, speech can only be used effectively as an
input method in combination with good error recovery mechanisms. While
the corresponding research focuses on processing short, individual utterances
presented by a single speaker, some of the methods found in literature can
be transferred to our investigated topic of respeaking as a large-scale tran-
scription method.

[Suhm and Waibel, 1997, Suhm et al., 2001] make a case for using mul-
tiple, orthogonal modalities for the correction of speech transcripts, such as
spelling and handwriting recognition1. They further propose using available

1
See also patent [Waibel et al., 1998]

8

2.5. Error Correction for Speech Input

context information to adapt the language model, and employ a rescoring
strategy1. Results include the observation that depending on the typing
speed and respeaking recognition accuracy, respeaking may be faster than
typing. The experiment conditions are slightly different in that perfect ac-
curacy desired and enabled by a post-correction step, but nevertheless the
results are consistent with those reported in this thesis. Note that switching
ASR systems, as proposed in [Zweig, 2009], can also be understood as such
an orthogonal modality, the same holds for switching speakers as considered
in this study. In [Vertanen and Kristensson, 2009], the automatic alignment
of respoken corrections is investigated, which can be used in combination
with automatic intention detection [Choi et al., 2012] to create a natural
correction interface. The former method could also be used in the scenario
investigated here, and enable respeaking segments partially.

Further research investigates the benefit of confusion networks [Mangu
et al., 2000] for system combination. [Ogata and Goto, 2005] propose using
confusion networks to obtain and display alternative word hypotheses for
selection, and [Ishimaru et al., 2011] show that correction speed can be in-
creased with richer confusion networks obtained by combining the output of
several ASR systems. [Cesari et al., 2008] combine confusion networks from
respoken corrections, and employ a “forced correction” strategy. [Vertanen
and Kristensson, 2010] propose an improved method of combining confusion
networks in the context of respeaking. In contrast, in this study we use a sim-
pler approach of hypothesis combination based one-best hypotheses, because
these turn out to enable more robust alignments in the context of combin-
ing utterances by multiple speakers, at least when enriched with phonetic
information.

1
See also patent [Waibel and McNair, 1998]

9

Chapter 3

The Proposed Method

3.1 Overview
The goal of this study is to develop a method to improve the quality of a
speech transcript efficiently through the use of respeaking. We define ef-
ficiency as the word error rate reduction achieved in a certain amount of
supervision time. Our approach comprises a sequence of steps, summarized
as follows. As a preparative step, the respeaker undergoes an enrollment
procedure. For a given speech that should be transcribed: (1) An initial au-
tomatic transcript is created. (2) Based on this initial transcript, the speech
is segmented into short, sentence-like units. (3) Each of these segments is
assigned a segment confidence score. (4) The respeaker speaks each segment.
(5) The recognition hypotheses from the original speaker and the respeaker
are combined to improve the results.

3.2 Preparative Step – Enrollment
We assume that respeaking is to be performed by the same, known speaker(s)
repeatedly, which justifies the effort to train speaker-adapted acoustic models
to enroll each speaker. The speaker records training material for supervised
model adaptation, preferably in the same recording environment in which
the respeaking is to take place. Depending on the amount of data, different
adaptation techniques are suitable. In this study, we use maximum likelihood
linear regression (MLLR) in a supervised fashion [Leggetter and Woodland,
1995,Gales, 1998].

MLLR is a method for acoustic model adaptation that attempts to find
linear transformations for the mean values and covariance matrices of a
Gaussian mixture HMM that can capture a general relationship between

11

Chapter 3. The Proposed Method

the trained models and the particular speaker. More specifically, the
transformations that yield maximum likelihood of the recorded data, given
the transformed models, are estimated. A regression tree, determined
by clustering the models in the acoustic space, represents groups of
models that share the same transformation. The less adaptation data is
available, the more shallow the tree, and the larger the number of models
that share a transformation. MLLR can be applied in an unconstrained
fashion [Leggetter and Woodland, 1995], with mean values and covariance
matrices having different transformations. A second approach is constrained
MLLR [Gales, 1998]: here, mean values and covariance matrices share
the same transformation. We use both approaches simultaneously for an
additive gain in accuracy.

3.3 Step 1 – Initial Recognition

As a visual guide for the respeaker, and to enable the succeeding steps, we use
ASR to create an initial transcript from the original speech. We use confusion
networks for decoding to estimate reliable confidence scores (see Section 3.5).
The confusion networks are computed based on a semi-supervised segmen-
tation (see Section 4.1). Besides the confidence scores, confusion networks
might be helpful in the future for displaying word alternatives on the screen,
as well as for improved hypothesis combination.

3.4 Step 2 – Segmentation

Next, the speech is segmented into smaller utterances. Segmentation is an
important part of our approach, as it not only makes the actual respeaking
easier, but also allows skipping segments via confidence filtering and simpli-
fies navigation. Note that, as a limitation, segment-by-segment correction
produces some overhead for each segment due to the delay that comes from
the respeaker having to listen ahead before actually speaking. A suitable
segmentation strategy should produce segments that are long enough to re-
duce this delay and ensure good recognition accuracy, but not so long that
the respeaker has to speak more than is necessary. Segment breaks should
also appear at natural positions in the sentence, as an awkward segmenta-
tion might be confusing and produce suboptimal language model scores when
recognizing the respoken utterances.

12

3.4. Step 2 – Segmentation

3.4.1 Segmentation Algorithm

We adopt a method that attempts to obtain a natural segmentation and
allows adjusting the segments’ length [Matusov et al., 2006]. This segmenta-
tion scheme provides a good approximation of some of the desired properties
stated above. The basic idea is to assign a probability to every possible seg-
mentation, and then employ a dynamic programming strategy to find the
globally optimal segmentation.

The probability of a segmentation is modeled as a log-linear feature com-
bination:

P(sm0 |wn
1 , tn0) =

exp(
"

l2L

! l áf l(sm0 , wn
1 , tn0))

"

m0,s0m
0

0

exp(
"

l2L

! l áf l(s0
m0

0 , wn
1 , tn0))

(3.1)

Here, sm0 are the indices of a segmentation into m segments, where the i -th
segment corresponds to the word sequence wsi +1 �1

si (hence, s0 = 1, and sm =

n + 1). Further, wn
1 is the sequence of words to be segmented, consisting of

n words, and t i is the length of the prosodic break between wi and wi+1. ! l

is the feature weight and f l the corresponding feature scoring function for all
feature indices l # L . The algorithm then finds the most probable among all
combinations of segment breaks:

argmaxm,sm
0

"

l2L

! l áf l(sm0 , wn
1 , tn0) (3.2)

Here, we left out the denominator (since it does not depend on the choice
of sm0), and the strictly increasing exponential function, without changing
the result. The feature functions f l assume the different segments to be
stochastically independent and score each segment individually, yielding

f l(sm0 , wn
1 , tn0) =

m�1!

i=0

f l(wsi +1 �1
si

, tsi +1
si �1) (3.3)

We chose the following features:

¥ Segment-boundary language model score:

f
LM-bound

(wsi . . . wsi +1) =P
LM

(<s> wsi . . . wsi +K�1) $

P
LM

(wsi +1 �K+2 . . . wsi +1 </s>)

(3.4)

for an n-gram language model of order K .

13

Chapter 3. The Proposed Method

¥ Inner segment language model score:

f
LM-inner

(wsi . . . wsi +1) = P
LM

(wsi . . . wsi �1) (3.5)

¥ Length of the prosodic breaks before and after the segment, with a
cutoff after 10 seconds, and normalized to values between 0 and 1:

f
pros

(tsi �1, tsi +1) = 0.01 ámax(tsi �1, 10sec) ámax(tsi +1 , 10sec) (3.6)

¥ Segment length model, estimated on pre-segmented transcripts:

f
length

(si, si+1) = P(segment length = si+1 " si) (3.7)

¥ Segment duration model, estimated on pre-segmented transcripts using
a histogram approximation:

f
dur

(si, si+1) = P(segment duration ! t
end

(si+1) " t
start

(si)) (3.8)

where t
start

(w) and t
end

(w) denote the starting and ending times of
word w.

¥ A penalty for inserting new segments, which can be used as a bias to
increase or reduce the length of the segments, depending on its feature
weight:

f
pen

(si, si+1) = 1 (3.9)

Our selection of features is similar but not equal to the features proposed
by [Matusov et al., 2006]. More specifically, we consider boundary and inner
language model probabilities as separate features and let the tuning proce-
dure determine the relative importance of both. Also, we add the duration
model to ensure the segments to be coherent units not only grammatically
but also in a temporal sense. In contrast, the original method uses only a
single language model score, and no duration model.

The search is performed using a dynamic programming approach. We as-
sume that at a given time, we have already found the optimal segmentations
for all word sequences (w1), (w1w2), up unto (w1 . . . wi), given any number of
segments k up to a maximum of K . Let s(j, k) denote the score correspond-
ing to the best segmentation up to word wj when dividing into k segments
(j # { 1, . . . , i} , k # { 1, . . . ,min(K, j)}). Further, we keep track of the actual
segmentation using pred(j, k). This definition can be thought of as defining
segment breaks before words w1, . . . , pred(pred(wi, k), k " 1), pred(wi, k), wi,
given a word sequence w1 . . . wi.

14

3.4. Step 2 – Segmentation

Now, adding the next word wi+1, the best segmentation for the sequence
w0 . . . wi+1 can be computed for all k # { 1, . . . ,min(K, i + 1)} by setting:

s(i + 1, k) := max

j2{1,...,i}

#

s(j, k " 1) +

L"

l=1

! l áf l(wsi +1
sj

, tsi +1
sj �1)

$

(3.10)

pred(i + 1, k) := argmax

j2{1,...,i}

#

s(j, k " 1) +

L"

l=1

! l áf l(wsi +1
sj

, tsi +1
sj �1)

$

(3.11)

Here, f 1, . . . , f L denote our feature functions is stated above. In prac-
tice, we do not want segments to become arbitrarily long. We can thus
define a maximum segment length L and let j run only in a smaller interval
j # { (i +1) " L, . . . , i } . In our experiments, we set L to 15. As a side effect,
constraining the segment length makes the search run in linear time with
respect to the number of words. More precisely, the segmentation algorithm
now runs in O(N áK) instead of O(N 2áK) for N words and K segments. The
number of segments is approximately proportional to the number of words,
hence we can finally approximate the complexity as O(N 2

).

3.4.2 Tuning

We tuned the segmentation parameters on transcriptions for TED talks.
These transcriptions are segmented as subtitles to accompany the videos.
We found these subtitles to have a pleasant length for respeaking, although
we did not perform an explicit optimization of the segment length for
our task. Moreover, the segmentation is usually chosen in a way that the
resulting segments form units that sound natural and often occur when the
speaker pauses. Since only rough segment-level alignments are available, we
used ASR to create accurate word-level forced alignments, which are needed
to determine the prosodic feature for the segmentation. For the language
model, we used a 4-gram model interpolated from TED data and other
background corpora.

Powell’s method was employed for the tuning, which performs a grid
search for one parameter at a time, until a convergence criterion is reached.
We used random initial parameters, and iterated through the parameters in
random order. Since scaling the parameters uniformly does not change the
result, we constrained the parameters so that the sum of their absolute values
must equal 1.0. We considered the tuning as having converged when there
was no parameter adjustment possible that improved the objective function
by more than 0.00001.

15

Chapter 3. The Proposed Method

Objective f
LM-bound

f
LM-inner

f
pros

f
length

f
dur

f
pen

F-measure 0.027 0.111 0.109 -0.027 0.092 -0.635
Mean deviation 0.030 0.089 -0.0776 0.080 0.140 -0.583

Table 3.1: Sample parameter conÞgurations, tuned according to f-measure and
mean deviation.

In [Matusov et al., 2006], it is suggested to use the balanced f-measure
as the objective function for tuning, which is defined as the harmonic mean
of recall and precision (see [Rijsbergen, 1979]) and intuitively measures how
many of the predicted segment breaks are correct, and how many of the ac-
tual segment breaks were predicted. The f-measure penalizes segment breaks
that are just slightly off and those that are in the middle of a segment equally,
which may not be optimal. Hence, we compared it to a different objective
function, the Segment Overlap Score (SOV) [Zemla et al., 1999], which is
used in bio-informatics as a measure of the degree to which the segments of
a true and a hypothesized segmentation overlap. Unfortunately, the SOV
seems to be to specific or ”strict“, because the tuning converged already after
a few iterations without any substantial improvements. For this reason, we
implemented a third and simpler objective, measuring the mean deviation of
reference segments rm0 from the hypothesized segments sn0 as follows:

%

1 "
1

m

m"

i=0

min

0jn

|r i " sj |
max_length

&

á
'
1 "

|m " n|
max(m, n)

(

This can be understood as the mean segment boundary deviation times
the difference in number of segments, the latter making sure that the num-
ber of segments be similar to that of the reference segmentation. This third
objective function resulted in good segmentations, and had better conver-
gence behavior than the SOV, although tuning seemed more prone to ending
in suboptimal local optima. Also, we noticed that the dependence on the
prosodic feature was quite weak as compared to using the f-measure. Con-
sider the example in Table 3.1, in which the prosodic feature weight even
gets negative when tuning using the mean deviation, as opposed to a pos-
itive weight for the f-score. A low prosodic feature weight causes problems
in practice, since segments with no leading and trailing prosodic breaks are
harder to understand and respeak (see section 4.6.1). We hence decided to
use the f-measure in our reference implementation. Tuning resulted in a final
f-measure of 0.45.

16

3.5. Step 3 – Segment Confidence Estimation

3.4.3 On Re-Decoding

A natural successive step that could be examined for performance gains is
re-decoding using the new segmentation. However, manual analysis showed
that sometimes segment breaks occurred at inappropriate locations, due to
recognition or alignment errors. Moreover, some segments are very short, so
language model context would have to be carried over between segments for
reliable recognition. These factors suggest that re-decoding would probably
not bring further gains, so we did not attempt such experiments.

3.5 Step 3 – Segment Confidence Estimation
The next step, the estimation of confidence measures, is important because
they allow us to identify segments with potentially high error rates. By first
correcting these segments, either through respeaking or typing, we can reduce
a larger number of errors in less time.

3.5.1 Word-level Confidence Measures

The perhaps most intuitive confidence measure for recognized words would
be a direct computation of their posterior probability. Let W = w1 . . . wn be
a recognition hypothesis, X the acoustic data, and Rw

i the set of all refer-
ence strings that contain w at their i -th position, i.e. Rw

i = { R = r 1 . . . rm #
Vm|m % i, r i = w} for vocabulary V. The probability of finding w at position
i is then given by

P(wi = w|X) =

"

R2Rw
i

P(R|X)

=

"

R2Rw
i

P(X |R) áP(R)

P(X)

=

"

R2Rw
i

P(X |R) áP(R)

"

R0

P(X |R0
) áP(R0

)

(3.12)

Unfortunately, a direct, exact computation of the posterior probability
is computationally intractable. In the ASR literature, there exist two main
approaches to approximate confidence measures for words: one is based on
feature combination, and one estimates posterior word probabilities from lat-
tices. For some time, feature combination was the predominate strategy to
compute confidence measures. However, as demonstrated by [Schaaf and

17

Chapter 3. The Proposed Method

Kemp, 1997b] and refined by [Wessel et al., 2001], accurate posterior proba-
bilities can be estimated from lattices using the forward-backward algorithm
on the decoding lattice, while averaging over the different alignments for each
word. The obtained posterior is only an approximation because of the search
constraints and pruning when building the lattice, but is demonstrated to
outperform methods based on feature combination. Since the authors do not
report on the effect of the search beam size on the reliability of the posterior
probabilities, we performed some experiments (see section 4.4.1).

An alternative method that has been shown to accurately estimate pos-
terior word probabilities is based on confusion networks [Mangu et al., 2000].
Confusion networks allow the decoding of hypotheses that minimize the WER
directly, as opposed to minimizing the sentence error rate as in traditional
lattice-based decoding approaches. To this end, a complete alignment is ap-
proximated by merging links in the lattice until a total ordering is found.
The best hypothesis is then determined by simply choosing the words with
highest link probabilities at each point. These posterior probabilities can
also be used as confidence measures.

For the sake of completeness, we have also implemented a confidence
score using a support vector machine (SVM) to combine several features.
We chose several of the features reported to be most helpful in [Schaaf and
Kemp, 1997a], including word duration, number of phones, average dura-
tion per phone, duration of the longest and shortest phone, the number of
language model back-offs necessary, and the number of active states for the
last frame, averaged over three adjacent frames. Results are reported in
section 4.4.1.

3.5.2 Segment-level Confidence Measures

While it is straight-forward to compute sentence-level posterior probabilities,
perhaps normalized by the number of frames, this would lead us to optimize
the sentence error rate. Previous work has shown that for decoding, more
directly optimizing the word error rate, rather than the sentence error rate,
yields slightly improved results, even though both are well correlated [Mangu
et al., 2000]. Doing so requires considerable additional effort, but there is a
second reason why we prefer going the extra mile: A confidence measure that
is more directly related to the word error rate is very helpful to intuitively
fix a particular threshold, which is necessary to apply confidence filtering in
practice.

Given word posterior probabilities, we define the segment confidence score
as their arithmetic mean. This is justified as follows. If our goal is to decrease
the WER effectively, we should start by correcting the segments whose WER

18

3.6. Step 4 – Respeaking

is comparably high. The mean posterior approximates said WER:

1

n

n"

i=1

p(wi|X) =

1

n
E[I + S] =

1

C + S + I
E[I + S]

!
1

C + S + D
E[I + S + D] = E[WER(wn

1)]

(3.13)

Here, n denotes the recognized number of words, and C, S, I, and D de-
note the number of words corrected, substituted, inserted, or deleted from
the reference. The approximation becomes an equality if we assume all errors
to be substitution errors, i.e. D = I = 0.

3.6 Step 4 – Respeaking

3.6.1 Supervision Strategies

For respeaking, we define two supervision strategies. The first, more tradi-
tional strategy is sequential correction: Segments are corrected in temporal
order, and every segment is presented to the respeaker regardless of its confi-
dence. The second, proposed strategy is to make use of segment confidences:
Segments are corrected in ascending order of confidence, and supervision can
be aborted once a certain threshold is reached. The first strategy makes it
easier for the respeaker to keep track of the speech’s context, whereas the
second strategy has the advantage of saving effort via the confidence filtering.
Note that it would be easy and also reasonable to mix both strategies, i.e.
using a sequential order but with confidence filtering; however, this would
complicate interpretability of our results and is thus left for future work.

In practice, a respeaker would start listening to a segment, and start
speaking while still listening. If the speaker notices that the original tran-
script is already correct, he would abort the recording and directly proceed
to the next segment. This strategy of skipping segments that are already
correct is effective both in saving time and increasing accuracy. The correc-
tion effort for skipped segments can be expected to be roughly equal to their
playback duration, while all other segments take longer, due to the inevitable
delay between listening and speaking.

3.6.2 Graphical User Interface

A good design of the respeaking user interface is of critical importance and
has a strong impact on the respeaking efficiency. This chapter describes the
user interface that was developed in parallel to the respeaking experiments

19

Chapter 3. The Proposed Method

conducted in this study, and reflects the experiences we made in the process.
A screen shot of the result can be seen in Figure 3.1. The user interface
displays the automatically segmented initial transcript, aligned to a vertical
waveform representing the speech. Segment confidences are visualized by
coloring the segment’s edge with a color between red (low confidence) and
grey (high confidence). Manually verified segments are assigned a green color.
The tool allows playback of the complete speech, or individual segments. For
each segment, a respoken version can be recorded, either simultaneously to
listening, or afterwards. As a backup input method, for example in the case
of out-of-vocabulary (OOV) words, corrections may also be typed, with the
tab key allowing fast selection and jumping between words. As indicated ear-
lier, segments may be manually verified, meaning that the initial hypothesis
is already correct and no correction is required. Doing so will automatically
cancel respeaking recording, and jump to the next segment.

There are several ways to navigate through speech. One way is to use the
scrollbar and select arbitrary segments as desired. Alternatively, the previ-
ous/next buttons can be used to navigate through the segments in temporal
order, or in the order of lowest confidence. A confidence threshold can be set,
which will mark segments having a confidence higher than the threshold as
inactive, and cause these segments to be skipped when navigating between
segments.

The interface is designed to support the two supervision strategies de-
scribed in Section 3.6.1.

¥ The speech can be supervised via manual verification, meaning that
the respeaker would listen to all segments in temporal order, verify-
ing segments if they are already correct, or respeaking them otherwise.
This is a reasonable setup if the whole speech is to be corrected.

¥ The speech can be corrected by relying on confidences. Either a thresh-
old is set in order to be able to easily skip the correction of segments
that are likely to be correct in the first place, or segments can be nav-
igated in the order of lowest confidence, e.g. until a certain proportion
is corrected or a time limit is reached. This setup is reasonable if the
respeaker wants to save effort by correcting only part of the speech.

Since the enrollment procedure is an integral part of our approach, the
user interface also provides a simple dialog to conduct enrollment recordings.

20

3.7. Step 5 – Hypothesis Combination

Figure 3.1: Screen shot of the respeaking interface.

3.7 Step 5 – Hypothesis Combination

An early error analysis of our respeaking experiments (see Chapter 4) re-
vealed that our respeakers were able to correct about 60% of the original
speakers’ errors, but introduced 31% new errors. This surprising difference
in occurring errors makes a strong case for using system combination tech-
niques to combine both hypotheses, and hopefully have some errors cancel
each other out. Unfortunately, traditional system combination methods for
ASR rely on consistent time alignments between the hypotheses in order to
create a global alignment. The time alignments in the respeaking scenario
are not consistent, since recognition hypotheses from two different recordings
are to be used. We hence use ROVER [Fiscus, 1997], a method for combin-
ing one-best hypotheses that works even without consistent time alignments.
Two hypotheses are combined based on their word alignment, and the word
with the highest confidence is chosen at each position. Null-links are assigned
a fixed confidence score determined on a development set.

We noticed that in some cases, ROVER produced unstable alignments.

21

Chapter 3. The Proposed Method

Consider the following hypothetical two examples of aligning two hypotheses:

(Hypothesis 1) I have being to Paris
(Hypothesis 2) I have been Paris

(Hypothesis 1) I have being to Paris
(Hypothesis 2) I have been Paris

Clearly, the first alignment of hypothesis 2 is preferable, but for ROVER
both alignments are equally likely. To solve such problems, we extend
ROVER by establishing word alignments based on the orthographic or
phonetic similarity of words, rather than word identity. Still, in some
cases even the orthographic or phonetic similarity is not useful to resolve
ambiguities. Consider these example alignments:

(Hypothesis 1) I do want to eat Sushi
(Hypothesis 2) I like to eat Sushi

(Hypothesis 1) I do want to eat Sushi
(Hypothesis 2) I like to eat Sushi

The correct recognition in this example would be “I do like to eat Sushi.”
A possible scenario leading to the given two hypotheses might be an overly
strong language model score leading to the substitution of the word “like”
by “want” in the first hypothesis, and a deletion error for the word “do” in
the second hypothesis. Often, these deletion errors occur when the ASR
recognizes a filler instead of a lexical word. If we include the possibly oc-
curring filler before the word “like” as a null-link, we can obtain the desired
alignment.

Positive results for both extensions are reported in Section 4.5.

22

Chapter 4

Evaluation

We conducted detailed experiments comparing the effect of different cor-
rection strategies, speaking versus typing, and other factors that influence
correction efficiency. We present our analysis in this chapter.

4.1 Setup & Data

For the evaluation of our method, we used data from TED1, a platform for
talks in the fields of technology, entertainment, and design for which record-
ings and transcripts are freely available. The talks are moderate in length
(about 5 to 20 minutes), and are presented by skillful speakers producing
fairly clear speech, making TED a good choice for performing respeaking
experiments. We divided the TED corpus into training, development, and
evaluation sets (see Table 4.1). The development set contained 3 complete
talks with a total of 47 minutes and 6424 words. The evaluation data con-
sisted of two 15-minute talks that were corrected fully and sequentially, and
5 talks that were corrected only partially (between 2 and 3 minutes per talk)
and in order of segment confidence. Respeaking data was collected by 3
respeakers (1 native English, 2 foreign) for the development data, and 2 re-
speakers (1 native English, 1 foreign) for the evaluation data. The respeakers
did not undergo any training procedure. All segments were both respoken
and typed, in alternating order to remove bias. For evaluation, we mea-
sured the time spent for respeaking or typing for every segment. In addition,
every respeaker recorded a text of 7416 words as enrollment material. All re-
speakers could be categorized as average speakers and above-average typists
in terms of speed. For instance, their averaged typing and respeaking speeds

1
www.ted.com

23

Chapter 4. Evaluation

were 66 and 101 wpm, respectively, as compared to 46 and 107 wpm for an
average typist and speaker according to [Moore et al., 2004].

We used a fairly standard decoding setup for our experiments. For
acoustic modeling, MFCC with 3000 codebooks, 64 Gaussians, and a 42-
dimensional feature vector were used. We used a 4-gram language model
tuned to minimize the perplexity on a held-out TED data set. The vocab-
ulary size was 180k. Decoding was performed by the IBIS decoder [Soltau
et al., 2001] which is part of the Janus Recognition Toolkit (JRTk). It used
a semi-supervised segmentation of the talks based on a forced alignment of
provided TED subtitles, where segment were divided when longer pauses
were detected between subtitles. Training data for acoustic and language
models includes TED, lecture material, TCSTAR1, among others. On
our development and evaluation sets, this setup achieved a word error
rate of 27.1% and 21.7%, respectively. Note the superior accuracy for
the evaluation set, which is partly due to more accurate transcripts as
compared to the development set. For the development data, we used the
closed captions provided by TED, which are optimized for readability, not
perfect accuracy. For the evaluation data, on the other hand, manually
corrected and improved transcripts were available. Also, better speakers for
the evaluation dataset, and missing word normalization for the development
transcripts might have impacted the word error rate.

Data set Segment order Respeakers Talks Words
DEV sequential 3 3 (full) 6424

EVAL sequential 2 2 (full) 2994
by confidence 5 (partial) 2669

Table 4.1: Overview of respeaking data.

4.2 Speaker Adaptation

Table 4.2 shows results of the supervised speaker adaptation for the respoken
development and evaluation sets, in comparison for our three respeakers. It
can be seen that the enrollment was quite effective, decreasing the word error
rate by roughly 25% relative on average. It is also interesting to see that in
our experiments, the speaker adaptation had an especially strong effect on
the first foreign speaker who had the worst baseline WER.

1
www.tcstar.org

24

4.3. Segmentation

DEV EVAL
Native 1 Foreign 1 Foreign 2 Native 1 Foreign 1

baseline 21 25.3 20.9 17.2 22.4
speaker-adapted 17.3 16.5 17 14.5 15.3

Table 4.2: Word error rates before and after speaker adaptation.

4.3 Segmentation

We present a rather informal discussion on the usefulness of the proposed
segmentation scheme in the respeaking context1. During the respeaking ex-
periments, we found that our segmentation strategy produced a reasonable
and effective segmentation into relatively natural sentence-like units. How-
ever, we noticed that sometimes segments were split at a position between two
words where no pause was present. Even worse, sometimes segment breaks
occurred in the middle of a word, due to erroneous automatic transcripts.
This complicates understanding when listening to the segment, and creates
ambiguity as to which segment the words lying on the segment boundaries
belong to.

Table 4.3 displays the average time spend for correcting segments, as well
as the resulting word error rates, in comparison between segment boundaries
that obeyed or neglected prosodic pauses. It can be seen that for respeaking
the time effort increased slightly, and for typing considerably, when no pause
was present, possibly due to the respeaker having to replay the audio from
before the segment break to understand the respective word. An interest-
ing observation reported by the participants was that, in a way, respeaking
was perceived as easier than typing. The reason is that for words that were
hard to understand, one could still respeak just by mimicking the sound of
it, whereas typing required knowing the correct spelling, which in turn re-
quired having completely understood the respective word. This is a possible
explanation for the gap in time increase between typing and respeaking seg-
ments that did not obey prosodic breaks and thus often contained words at
the segment boundaries that were hard to understand. In addition to su-
pervision time, the resulting word error rate also increased, mostly because
the respeaker either misunderstood the words near the segment boundary, or
assigned them to the wrong segment.

To solve this problem, future segmentation methods could automatically
detect prosodic breaks, and insert segment breaks only at these breaks. As

1
A formal evaluation in which the user experiments are repeated on a number of dif-

ferent segmentations would be desirable, but too tedious to conduct.

25

Chapter 4. Evaluation

Avg. correction effort Word error rate
Respeak Keyboard Respeak Keyboard

Pause 6.6 sec 8.5 sec 18.2% 6.4%
No pause 6.8 sec 9.4 sec 20.2% 4.5%

Table 4.3: Di!erence of e"ciency for segments having a pause before and after-
wards, and segments with no pause either before or afterwards.

can be seen in the above numbers, we can expect significant efficiency gains
when using such a segmentation scheme that considers prosodic breaks as a
hard requirement.

The segment length was tuned towards the TED subtitles which are op-
timized for screen display, a reasonable but probably not optimal choice in
terms of respeaking effort and speech recognition performance. Also, this
tuning was performed on error-free reference transcripts, which are different
from the actual automatic transcripts that we want to segment in practice. In
future work, tuning should be carried out directly on automatic transcripts.
This would also allow the inclusion of additional features, such as word con-
fidences on the segment boundary. It should finally be investigated whether
there are segmentation approaches that are more effective in a correction
scenario, perhaps by explicitly optimizing the expected correction time.

Despite these issues, the method proved very effective for the respeaking
scenario, as the results in the remainder of this chapter demonstrate.

4.4 Confidences

4.4.1 Evaluation: Word Confidence

The evaluation of confidence measures is not straightforward, as many pos-
sible ways of comparison exist. One might assume a binary classifier that
labels every word with confidence above a threshold as correct, and below as
incorrect. For such a classifier, accuracy-precision-curves compare accuracy
and precision for different thresholds. These curves reveal valuable informa-
tion for a specific confidence measure, and allow the comparison of different
measures given a fixed dataset, i.e. a fixed decoding setup. In an initial ex-
periment, we compared the performance of a feature combination approach
using an SVM, and the direct estimation of posterior probabilities. Our best
SVM used a quadratic kernel and performed slightly worse than the poste-
riors according to the accuracy-precision curve, which is in line with results
found in literature [Jiang, 2005]. For example, at 75% recall, the posteriors

26

4.4. Confidences

Decoding method Standard Confusion network
Search beam size 0.7 0.9 1.0 1.1 1.3 1.0

MCC 0.29 0.29 0.422 0.42 0.421 0.480
eff-word15% 0.75 0.75 0.268 0.254 0.243 0.231
eff-word10% 1.0 1.0 0.524 0.526 0.535 0.426

Table 4.4: Performance of di!erent approaches to determining conÞdence mea-
sures, for lattices with di!erent beam sizes, relative to the default size chosen for
the decoding as a good trade-o! between recognition accuracy and runtime. The
last row shows results using a confusion network. The methods are compared using
the Matthews correlation coe"cient (MCC), and e!ort measures for achieving a
word error rate of 15% and 10% using word-based correction.

reached a precision of 75%, compared to only 72% precision in case of the
SVM. Based on these results, we decided to focus our further efforts on the
posterior probabilities.

We are further interested in finding out how the decoding setup itself im-
pacts the quality of the confidence measures. Since accuracy-precision-curves
are difficult to compare across data sets, a better evaluation method is needed
in this scenario. A popular choice for evaluation is the confidence error rate,
which denotes the proportion of falsely predicted labels for a threshold that
is optimal in this sense. Unfortunately, the confidence error rate suffers from
the same problems. In particular, it is highly correlated with the word error
rate, and hence does not allow a fair comparison across datasets. A better
choice is the Matthews correlation coefficient (MCC, see [Matthews, 1975]),
which basically measures the correlation between actual and predicted labels,
taking on values between -1 and 1.

We compared the MCC for different lattice sizes by altering the search
beam size. Table 4.4 shows that decreasing the search beam size for the com-
putation of the confidence measures resulted in much inferior performance,
but increasing it did not change the performance significantly in terms of the
MCC. Confusion networks, for which we only provide numbers with unal-
tered search beam, performed considerably better, achieving a MCC of 0.48.
These results suggest that the beam size used for the decoding is also a good
choice for computing confidence measures, but the lattice-base approach is
outperformed by confusion networks in any case.

As a more direct measure for the usefulness of different confidence mea-
sures to save correction effort, we define an effort measure as denoting the
proportion of the transcript one must correct to obtain a desired WER for
the transcript when proceeding in ascending order of confidences.

Note that for a scenario in which individual words are corrected sepa-

27

Chapter 4. Evaluation

Figure 4.1: Word-based correction: Plot of the achievable word error rate, with
respect to the proportion of corrected words. For comparison, the e!ort curves for
an example correction in random order and for an optimal oracle correction order
are shown.

rately, it is not clear how to cope with deletion errors. They may or may not
overlap with (parts of) recognized words, and may possibly never be corrected
at all. A possible solution would be to consider recognized fillers or pauses in
between words as well, including the respective confidences. However, due to
the missing language model context for fillers, their confidence scores might
not be very reliable, and to keep matters simple, we assume in our simula-
tion that deletion errors are never corrected in the word-correction scenario.
Hence an error-free transcript cannot be achieved even when correcting all
of the words in the hypothesized transcript.

Table 4.4 shows that computing confidence measures from the confusion
network outperformed lattice-based methods in terms of correction effort
also. It can be seen that increasing the lattice size reduced the correction
effort only in some cases, while the MCC did not improve. The reduced
effort might be owed to the slightly improved word error rate when using a
bigger lattice to decode, rather than an improved accuracy of the confidence
measure. Figure 4.1 shows the complete correction effort curves for lattice-
and confusion-network-based confidence measures, in comparison to random
and oracle correction order. Oracle in this context means that we assign
every incorrect word a confidence of 0.0, and every correct word a confidence
of 1.0. The figure reveals that part of the decrease in the effort for confusion

28

4.4. Confidences

Figure 4.2: Segment-based correction: Plot of the achievable word error rate,
with respect to the proportion of corrected words (the graph looked the same when
plotting the proportion of corrected segments instead). For comparison, the e!ort
curves for an example correction in random order, for an optimal oracle correction
order, and for word-based correction are shown.

networks was due to the fact that these produced less deletion errors. Given
a WER of about 28%, the use of this measure would make it necessary to cor-
rect 42.6% of all words to guarantee a WER of less than 10% (eff-word10%),
and 23.1% of all words for a WER of less than 15%(eff-word15%). As can
be seen in the figure, this lies roughly halfway between random and oracle
correction orders. Additional experiments on subsets of the data confirmed
the intuition that correction effort can be saved by lowering the word error
rate of the initial transcript, the correlation being 0.89 for eff-word10%.

Since the confidence measure based on confusion networks performed best
in terms of both classifier performance and resulting correction effort, we use
it in our reference implementation.

4.4.2 Evaluation: Segment Confidence

To obtain a better understanding of how well our confidence measure per-
forms in the respeaking context where whole segments instead of single words
are corrected, we performed some further experiments to analyze our seg-
ment confidence measure. The segment error rate, denoting the proportion
of segments containing at least one erroneous word, was 73.9% for the given
baseline system and reference segmentation. This value can be understood

29

Chapter 4. Evaluation

as the minimum number of segments that need to be corrected to achieve
a perfect transcript, by assuming that it is known which segments are cor-
rect and which are not. By assigning segment confidences, and designing a
threshold-based binary classifier as before, we obtained an MCC for segments
of 0.466.

As a more direct measure, we computed the effort for segment-wise cor-
rection. A word error rate of less than 15% could be guaranteed by correcting
at least 23% of all words (eff-seg15%), a word error rate of less than 10% by
correcting at least 40.5% of all words (eff-seg10%), and a word error rate of
less than 5% by correcting at least 60.6% of all words (eff-seg5%). Note that
achieving a 5% WER has become possible using the new segment-based cor-
rection scheme, because deletion errors can be corrected now. Figure 4.2
shows that segment-based correction never takes more time than word-based
correction, even though words with high confidence may be “corrected” spo-
radically as part of a segment low-confidence segment. When aiming for very
accurate transcripts, segment-based correction outperforms word-based cor-
rection due to its ability to correct deletion errors. The figure further reveals
the actual effort curve to be closer to the oracle curve, in which we assume
the segments’ confidence to be perfectly correlated to their WER, than to
the curve for random correction order. As with words, the segment-based
correction effort strongly depended on the WER of the data subset, with a
correlation above 0.9.

4.4.3 Discussion

As a conclusion to the above experiments, the use of confidence measures
can be expected to reduce the necessary correction effort strongly. More-
over, correction in a segment-based manner is beneficial in that it reduces
correction effort and provides a means to correct deletions, besides being a
necessity in respeaking. The required effort of a correction in the order of seg-
ment confidence was roughly halfway in between the baseline and the oracle
scenario, leaving some room for improvement. There are three straightfor-
ward ways to reduce correction effort: (1) By reducing the word error rate
of the initial transcript, a certain target word error rate is achieved faster.
(2) Finding a segmentation scheme that more directly minimizes the segment
error rate by clustering together correct or incorrect words, respectively, the
segment-based oracle curve is moved closer to the word-based oracle curve.
(3) More reliable confidence measures will help identify incorrect segments
more reliably.

As a more distant future work, it would also be interesting to find a
confidence measure that predicts the potential of the segment to be correct

30

4.5. Hypothesis Combination

Similarity measure Word identity Orthographic Phonetic
Ignore fillers 16.7 16.4 16.2

Fillers as null-links 16.8 16.1 15.9

Table 4.5: Word error rates [%] for the hypothesis combination using di!erent
similarity measures and optionally including Þllers as null-links. The baseline re-
speaking WER with no hypothesis combination was 16.9.

after respeaking. This confidence measure might for example give a low score
to segments containing OOV words, since these will still be incorrect after
respeaking. Also, we implicitly assumed that the correction effort for a seg-
ment is proportional to its length, and that ASR accuracy is independent of
a segment’s length, both of which are oversimplifications that bear further
potential of improvement.

4.5 Hypothesis Combination

Table 4.5 shows the effect of different hypothesis combination strategies on
the WER. The baseline word error rates were 27.1 (original speakers) and
16.9 (respeakers). It can be seen that orthographic and phonetic similar-
ity measures by far outperform the strict word identity. Furthermore, the
strategy of using recognized fillers as null-links improved the results for both
orthographic and phonetic similarities.

4.6 Overall Performance

4.6.1 Word Error Rates

Table 4.6 shows resulting word error rates for our experiments. It can be
seen that speaker enrollment is a crucial step of our method. Also, hypothe-
sis combination yielded good results, although skipping over correct segments
weakened the positive effect. The typing WER was 5.7%, which is perhaps
surprising. Analysis showed that about 1.8% of that was due to segmenta-
tion issues, in which the lack of a prosodic break complicated understanding
and caused ambiguity as to which segment a word belongs to. We conclude
that a better segmentation strategy is crucial to improve the method. The
remaining 3.9% WER were mostly due to ambiguous transcripts, e.g. caused
by speaking mistakes of the original speaker.

31

Chapter 4. Evaluation

DEV EVAL
all all skip

original speaker 31.4 21.7 -
baseline 22.4 19.8 15.8
speaker-adapted 16.9 14.9 12.3
hypothesis combination 15.9 13.1 11.9
keyboard - - 5.7

Table 4.6: Recognition word error rates [%] for baseline, speaker-adapted, and
combined systems, and keyboard correction. Results di!ered when respeaking all
segments, compared to skipping over segments that were already correct.

Sequential Confidence
Keyboard 61 wpm 58 wpm
Respeaking 97 wpm 83 wpm

Table 4.7: E!ective speaking and typing rates, including time needed to record
or listen to a segment again, and saving time by skipping correction for segments
that were already correct.

4.6.2 Correction Effort

Analysis of the correction time revealed a speaking rate of 189 wpm (words
per minute) for the original speakers, and 131 wpm for the respeakers. Re-
call that the tested subjects were no professional respeakers, which may be
the reason for the larger gap between original and re-speaking rates than
reported in literature [Romero-Fresco, 2009]. The delay at the beginning
of each recording, caused by having to listen ahead before respeaking, was
1.2 seconds on average and reduced the effective speaking rate to 100 wpm.
There was significant additional overhead due to having to listen to a segment
again when something was difficult to understand. Note that some of that
overhead was due to segmentation issues and might thus be eliminated by a
better segmentation. On the other hand, time was saved when the original
transcript was already correct and the respeaking could be aborted early. Ta-
ble 4.7 shows the speaking and typing rates when including all these factors.
It can be seen that speaking was significantly faster than typing, though far
from the original speaking rate. Also, for respeaking, proceeding in the order
of lowest confidences decreased the speaking rate significantly, as the lack of
context information made it harder to understand the speech.

32

4.6. Overall Performance

(a) Efficiency curves for the native speaker.

(b) Efficiency curves for the foreign speaker.

Figure 4.3: E"ciency Curves.

33

Chapter 4. Evaluation

4.6.3 Analysis of Efficiency

In this section, we analyze the efficiency of our approach, namely the achieved
reduction in WER compared to the overall correction time spent. Figure 4.3
shows this relation over various scenarios. Figure 4.3(a) shows that for the
native respeaker, respeaking or typing segments in the order of their confi-
dence was more efficient than going in sequential order, unless all segments
were to be corrected. In this case, confidences obviously do not bring any
benefit, and the sequential order was more efficient due to the faster input
rate as pointed out in the previous chapter. The diagram shows that the
native speaker had better results with respeaking than typing when spend-
ing less than 1.5 and 2.5 times real-time for correcting in confidence- and
sequential order, respectively. If one is willing to spend more time than that,
lower word error rates can be achieved only through typing. In comparison
to the native speaker, the foreign speaker’s respeaking recognition accuracy
was worse by about 12% relative, with the result that he was consistently
more efficient by typing than respeaking (see Figure 4.3(b)). The scenar-
ios of correcting in order of segment confidences versus sequential correction
compare similar as for the native speaker.

4.6.4 Simulating a Better Speaker

In our experiments, the respeakers showed lower performance than reported
in literature, both with respect to recognition rate and speaking rate. We
thus performed some simulations that, even though they cannot capture the
complex interplay of factors influencing efficiency in its entirety, demonstrate
the further potential of the proposed method. We use slightly pessimistic val-
ues of 10% WER and 152 wpm speaking rate (80% of the original speaking
rate), when compared to literature [Prazak et al., 2012,Romero-Fresco, 2009].
Figure 4.4 shows a simulation of a 10% WER speaker, which results in a no-
ticeable efficiency gain. Next, we simulate doubling the segment length, and
thus remove some of the overhead that is caused by the delay between lis-
tening and speaking. Perhaps surprisingly, this caused a loss of efficiency, as
now the number of completely correct segments that can be skipped is much
smaller. This indicates that the chosen segment length is already roughly a
good value, despite not being explicitly optimized. Finally, we increase the
speaking rate from 131 wpm to 152 wpm, which again results in a noticeable
efficiency gain.

34

4.6. Overall Performance

Figure 4.4: E"ciency curves for conÞdence-based correction by real and simu-
lated speakers.

4.6.5 Respeaking Versus Typing

The previously described efficiency curves (Figures 4.3 and 4.4) demonstrate
that depending on the targeted word error rate or the available time budget,
either respeaking or keyboard-based correction should be chosen. However,
we argue that the preferable correction method depends not only on the over-
all target, but also on each individual segment. For instance, our respeaking
technique requires respeaking complete segments regardless of the number of
errors in the original transcript. Typing, on the other hand, allows to correct
only the incorrect words, which saves time especially when there are only few
errors in the initial transcript. In fact, our respeakers naturally resorted to
this strategy, as can be seen in Figure 4.5(a). We can see that respeaking
effort remains roughly constant, whereas typing effort decreases as the seg-
ments’ WER decreases. In particular, segments with a WER of 5% or less
needed less time for typing than for respeaking, on average. This observation
may be used to give suggestions to the user as to whether a segment should
be typed or respoken, by estimating the WER based on the confidence score.
Figure 4.5(b) shows that using our segment confidence measure, we can pre-
dict that segments with a segment confidence above 0.9 are faster typed than
respoken.

In general, the answer to the question which correction modality is more
efficient, respeaking or typing, depends both on the time needed and the
achieved reduction in WER. To predict the most efficient correction modal-

35

Chapter 4. Evaluation

ity, both have to be modeled appropriately. Both the input rate and the
accuracy should be modeled depending on the individual human corrector
(see [Suhm et al., 2001] for initial work on this). The input rates also depend
on the individual segment. For example the keyboard correction effort de-
pends on the number of errors in a segment, as explained above. Similarly,
WER reductions depend not only on the corrector but also on the segment.
For example, the occurrence of OOV words puts respeaking at a disadvan-
tage, since they cannot be recognized by common ASR technology. Another
helpful clue to determine the expected respeaking recognition accuracy is the
acoustic confusability.

An interesting observation we made in our experiments was the positive
correlation between the segments’ initial and respoken word error rate. This
indicates that segments that were difficult for the recognizer originally were
also more difficult to recognize when uttered by the respeaker. This can be
explained by the fact that recognition errors are not only caused by difficult
acoustic conditions, but also by difficult words and sentences. Consequently,
the initial WER for a segment, as estimated by its confidence, can also be
used as a measure of how difficult the recognition of a particular respoken
utterance is.

36

4.6. Overall Performance

(a) Segment WER versus correction effort.

(b) Segment confidence versus correction effort.

Figure 4.5: Comparison of keyboard and respeaking as input methods for indi-
vidual segments.

37

Chapter 5

Conclusion

We proposed a method to enable efficient speech transcription through re-
speaking via a combination of various techniques. The proposed segmen-
tation strategy succeeded in making the respeaker’s task much easier. In
our experiments, the respeakers were able to reduce the initial word error
rate by 45% relative in about twice real-time. We showed that the efficiency
strongly depends on the speaker’s recognition rate, with respeaking outper-
forming typing for good speakers. We further demonstrated the potential of
using segment confidences and hypothesis combination to increase efficiency,
and showed that it depends on the particular segments whether respeaking
or typing is a better choice.

Immediate improvement can be achieved by using a supervision strategy
of proceeding sequentially, while using confidence filtering at the same
time. An important point is the improvement of the segmentation. Hard
requirement of a prosodic break, as well as an explicit optimization in terms
of correction effort seem promising. Finally, results may be improved by
using a more sophisticated hypothesis combination strategy, better ASR
setup, and various adaptation strategies.

39

Chapter 6

Future Perspectives

In this final chapter, we would like to shed some light on the broader per-
spectives this work is intended to open up, if only as an initial step. We have
previously contrasted the advantages and disadvantages of using automatic
transcription as compared to human transcription. Specifically, automatic
transcripts can be created fast and cheaply, but suffer from recognition er-
rors. On the other hand, humans are more expensive and need breaks, but
produce reliable results because they are strong at relating context informa-
tion and performing error recovery. We are convinced that by investigating
methods to bring ASR and human transcribers together, we can overcome
some of the limitations of both. In a cooperative scenario, we would rely on
the power of ASR to produce an initial guess and have a human corrector
ensure transcription quality. Moreover, both would interact with and learn
from one another. The presented respeaking approach allows transcribing
more accurately than can be achieved by completely unsupervised methods,
and faster than with using typing as input method. However, there is no real
interaction or feedback, and no learning from the speech recognizer’s part
takes place.

In an ideal case, the computer should ask the human to correct only what
is necessary, using the input method that is best in this particular case. In-
put methods may include typing, respeaking, or selecting from alternative
words or word sequences. Uncertain parts should be verified by the user as
efficiently as possible, for example by increasing playback speed or simply
displaying (parts of) the transcript. Every user interaction should be de-
signed not only to correct the respective errors efficiently, but also in a way
that the ASR system can be improved most effectively. For instance, the user
may be able to guess the reason that caused a particular error, and give feed-
back to adapt the ASR system appropriately. Every time the ASR system
learns, a new improved hypothesis for the remainder of the transcript would

41

Chapter 6. Future Perspectives

be created. Finally, user interactions should be managed in the particular
order in which the ASR algorithms can learn most efficiently.

42

Bibliography

[Cesari et al., 2008] Cesari, F., Franco, H., Myers, G. K., and Bratt, H.
(2008). MUESLI: Multiple Utterance Error Correction for a Spoken Lan-
guage Interface. In Interspeech, pages 199–202, Brisbane, Australia.

[Choi et al., 2012] Choi, J., Kim, K., Lee, S., Kim, S., Lee, D., Lee, I., and
Lee, G. G. (2012). Seamless Error Correction Interface For Voice Word
Processor. In International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 4973–4976, Kyoto, Japan.

[Evans, 2003] Evans, M. J. (2003). Speech Recognition in Assisted and Live
Subtitling for Television. BBC Research & Development White Paper.

[Fiscus, 1997] Fiscus, J. G. (1997). A Post-Processing System to Yield Re-
duced Word Error Rates: Recognizer Output Voting Error Reduction
(ROVER). In Automatic Speech Recognition and Understanding Work-
shop (ASRU), pages 347–354, Santa Barbara, California, USA.

[Gales, 1998] Gales, M. J. F. (1998). Maximum Likelihood Linear Trans-
formations for HMM-Based Speech Recognition. Computer Speech and
Language, 12(2):75–98.

[Homma et al., 2008] Homma, S., Kobayashi, A., Oku, T., Sato, S., Imai,
T., and Takagi, T. (2008). New Real-Time Closed-Captioning System for
Japanese Broadcast News Programs. In International Conference on Com-
puters Helping People with Special Needs (ICCHP), pages 651–654, Linz,
Austria.

[Hsu and Glass, 2009] Hsu, B.-J. P. and Glass, J. (2009). Language Model
Parameter Estimation Using User Transcriptions. In International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), pages 4805–
4808, Taipei, Taiwan.

[Huggins-Daines and Rudnicky, 2008] Huggins-Daines, D. and Rudnicky,
A. I. (2008). Interactive ASR Error Correction for Touchscreen Devices.

43

Bibliography

In Proceedings of the 46th Annual Meeting of the Association for Compu-
tational Linguistics on Human Language Technologies (ACL HLT), pages
17–19, Columbus, Ohio, USA.

[Ishimaru et al., 2011] Ishimaru, S., Nishizaki, H., and Sekiguchi, Y. (2011).
Effect of Confusion Network Combination on Speech Recognition System
for Editing. In Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA ASC), Xi’an, China.

[Jiang, 2005] Jiang, H. (2005). Confidence measures for speech recognition:
A survey. Speech Communication, 45(4):455–470.

[Kubat et al., 2007] Kubat, R., DeCamp, P., Roy, B., and Roy, D. (2007).
TotalRecall : Visualization and Semi-Automatic Annotation of Very Large
Audio-Visual Corpora Categories and Subject Descriptors. In Inter-
national Conference on Multimodal Interfaces (ICMI), pages 208–215,
Nagoya, Japan.

[Leggetter and Woodland, 1995] Leggetter, C. J. and Woodland, P. C.
(1995). Maximum likelihood linear regression for speaker adaptation of
continuous density hidden Markov models. Computer Speech & Language,
9:171–185.

[Luz et al., 2008] Luz, S., Masoodian, M., and Rogers, B. (2008). Interactive
visualisation techniques for dynamic speech transcription, correction and
training. In International Conference on Human-Computer Interaction
Design Centered HCI (CHINZ), pages 9–16, Wellington, New Zealand.

[Mangu et al., 2000] Mangu, L., Brill, E., and Stolcke, A. (2000). Finding
consensus in speech recognition: word error minimization and other appli-
cations of confusion networks. Computer Speech & Language, 14(4):373–
400.

[Matthews, 1975] Matthews, B. (1975). Comparison of the predicted and ob-
served secondary structure of T4 phage lysozyme. Biochim Biophys Acta,
405(2):442–451.

[Matusov et al., 2006] Matusov, E., Mauser, A., and Ney, H. (2006). Au-
tomatic Sentence Segmentation and Punctuation Prediction for Spoken
Language Translation. In International Workshop on Spoken Language
Translation (IWSLT), pages 158–165, Kyoto, Japan.

44

Bibliography

[Moore et al., 2004] Moore, R. K., Court, R., and Street, P. (2004). Mod-
elling Data Entry Rates for ASR and Alternative Input Methods. In In-
terspeech, Lisbon, Portugal.

[Ogata and Goto, 2005] Ogata, J. and Goto, M. (2005). Speech Repair:
Quick Error Correction Just by Using Selection Operation for Speech Input
Interfaces. In Eurospeech, pages 133–136, Lisbon, Portugal.

[Prazak et al., 2012] Prazak, A., Loose, Z., Trmal, J., Psutka, J. V., and
Psutka, J. (2012). Novel Approach to Live Captioning Through Re-
speaking: Tailoring Speech Recognition to Re-speaker’s Needs. In In-
terspeech, pages 4193–4196, Portland, Oregon, USA.

[Rijsbergen, 1979] Rijsbergen, C. J. V. (1979). Information Retrieval.
Butterworth-Heinemann, 2nd edition.

[Rodriguez et al., 2007] Rodriguez, L., Casacuberta, F., and Vidal, E.
(2007). Computer Assisted Transcription of Speech. In Pattern Recog-
nition and Image Analysis, pages 241–248.

[Romero-Fresco, 2009] Romero-Fresco, P. (2009). More haste less speed:
Edited versus verbatim respoken subtitles. Vigo International Journal
of Applied Linguistics, 6:109–134.

[Sanchez-Cortina et al., 2012] Sanchez-Cortina, I., Serrano, N., Sanchis, A.,
and Juan, A. (2012). A prototype for Interactive Speech Transcription
Balancing Error and Supervision Effort. In International Conference on
Intelligent User Interfaces (IUI), pages 325–326, Lisbon, Portugal.

[Schaaf and Kemp, 1997a] Schaaf, T. and Kemp, T. (1997a). Confidence
Measures for Spontaneous Speech Recognition. In International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), pages 875–
878, Honolulu, Hawaii, USA.

[Schaaf and Kemp, 1997b] Schaaf, T. and Kemp, T. (1997b). Estimating
confidence using word lattices. In EuroSpeech, pages 3–6, Rhodes, Greece.

[Soltau et al., 2001] Soltau, H., Metze, F., Fügen, C., and Waibel, A. (2001).
A One-Pass Decoder Based on Polymorphic Linguistic Context Assign-
ment. In Automatic Speech Recognition and Understanding Workshop
(ASRU), pages 214–217, Madonna di Campiglio, Italy.

[Suhm et al., 2001] Suhm, B., Myers, B., and Waibel, A. (2001). Multi-
modal error correction for speech user interfaces. ACM Transactions on
Computer-Human Interaction, 8(1):60–98.

45

[Suhm and Waibel, 1997] Suhm, B. and Waibel, A. (1997). Exploiting re-
pair context in interactive error recovery. In Eurospeech, pages 1659–1662,
Rhodes, Greece.

[Vertanen and Kristensson, 2009] Vertanen, K. and Kristensson, P. O.
(2009). Automatic selection of recognition errors by respeaking the in-
tended text. In Workshop on Automatic Speech Recognition & Under-
standing (ASRU), pages 130–135, Merano, Italy.

[Vertanen and Kristensson, 2010] Vertanen, K. and Kristensson, P. O.
(2010). Getting it Right the Second Time: Recognition of Spoken Correc-
tions. In Workshop on Spoken Language Technology (SLT), pages 289–294,
Berkeley, California, USA.

[Waibel and McNair, 1998] Waibel, A. and McNair, A. E. (1998). Locating
and Correcting Erroneously Recognized Portions of Utterances by Rescor-
ing Based on Two N-Best Lists.

[Waibel et al., 1998] Waibel, A., Suhm, B., and McNair, A. E. (1998).
Method and Apparatus for Correcting and Repairing Machine-Transcribed
Input Using Independent or Cross-Modal Secondary Input.

[Wessel et al., 2001] Wessel, F., Schlüter, R., Macherey, K., and Ney, H.
(2001). Confidence Measures for Large Vocabulary Continuous Speech
Recognition. Speech and Audio Processing, 9(3):288–298.

[Zemla et al., 1999] Zemla, A., Venclovas, C., Fidelis, K., and Rost, B.
(1999). A Modified Definition of Sov, a Segment-Based Measure. Pro-
teins: Structure, Function, and Bioinformatics, 34(2):220–223.

[Zweig, 2009] Zweig, G. (2009). New Methods for the Analysis of Repeated
Utterances. In Interspeech, pages 2791–2794, Brighton, UK.

	Introduction
	Background
	Automatic Speech Recognition
	Acoustic Model Adaptation
	Transcription
	Respeaking in the Television Industry
	Error Correction for Speech Input

	The Proposed Method
	Overview
	Preparative Step – Enrollment
	Step 1 – Initial Recognition
	Step 2 – Segmentation
	Segmentation Algorithm
	Tuning
	On Re-Decoding

	Step 3 – Segment Confidence Estimation
	Word-level Confidence Measures
	Segment-level Confidence Measures

	Step 4 – Respeaking
	Supervision Strategies
	Graphical User Interface

	Step 5 – Hypothesis Combination

	Evaluation
	Setup & Data
	Speaker Adaptation
	Segmentation
	Confidences
	Evaluation: Word Confidence
	Evaluation: Segment Confidence
	Discussion

	Hypothesis Combination
	Overall Performance
	Word Error Rates
	Correction Effort
	Analysis of Efficiency
	Simulating a Better Speaker
	Respeaking Versus Typing

	Conclusion
	Future Perspectives
	Bibliography

