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Abstract
The project Technology and Corpora for Speech to Speech
Translation (TC-STAR) aims at making a break-through in
speech-to-speech translation research, significantly reducing
the gap between the performance of machines and humans at
this task. Technological and scientific progress is driven by pe-
riodic, competitive evaluations within the project. In this paper
we describe the ISL speech transcription system for English Eu-
ropean Parliament speeches with which we participated in the
third TC-STAR evaluation campaing in the spring of 2007. The
improvements over last year’s system originate from a recog-
nition hypotheses based segmentation, the utilization of unsu-
pervised in-domain training material, a modified cross-system
adaptation and combination scheme, and the enhancement of
the language model through the use of web based training ma-
terial.
Index Terms: speech recognition, EPPS, TC-STAR, system de-
scription

1. Introduction
TC-STAR - Technology and Corpora for Speech to Speech
Translation is a three year integrated project financed by the Eu-
ropean Commission within the Sixth Framework Programme.
The aim of TC-STAR is to advance research in all core tech-
nologies for speech-to-speech translation (SST) in order to re-
duce the gap in performance between machines and human
translators. To foster significant advances in all SST technolo-
gies, periodic, competitive evaluations are conducted within
TC-STAR for all components involved, including automatic
speech recognition (ASR) research, as well as end-to-end sys-
tems. The main task for speech-to-speech translation within
TC-STAR is European Parliament Plenary Sessions. This tasks
consists of speeches delivered in the European Parliament as
they are being broadcast through Europe by Sattelite (EbS), the
European Union’s TV station.

In spring of 2007 the third and final TC-STAR evaluation
campaing took place. For the EPPS ASR task the evaluation of-
fered three different conditions: the restricted condition which
only allows for the use of EPPS training material, the public
condition which allows for all publicly available training mate-
rial, and the open condition which allows for any training mate-
rial available to a specific participant. For the training material
in all three conditions May 31st was the cut-off date prior to
which the training material had to originate.

For the EPPS task we participated for English in the pub-
lic condition. In this paper we describe the system we used
to participate. Our transcription system is centered around a
multi-pass decoding strategy[1] that incorporates acoustic mod-
els trained on two different phoneme sets and two acoustic-front

ends that are combined with the help of conufison network com-
bination (CNC) [2]. The main improvements and modifications
to last year’s system [3] are:

• Hypotheses based segmentation of the input audio

• Utilization of unsupervised acoustic training material

• Modified cross-system adaptation and combination
scheme

• Incorporation of training material obtained by automa-
tized web searches into the language model

Our system was mainly developed with the help of our in-
house Janus Recognition Toolkit (JRTk) which features the Ibis
single pass decoder [4].

The rest of the paper is organized as follows. Section 2 in-
troduces the acoustic front-ends used in our system, while Sec-
tion 3 describes the acoustic model, and Section 4 the segmen-
tation and clustering procedure of this year’s system. Section
5 describes the language model used and Section 6 the adapta-
tion and decoding strategy applied. Finally, Section 7 highlights
the imrovements in terms of WER that we obtained through the
new techniques used in this year’s system over last year’s.

2. Preprocessing
We trained systems for two different kinds of acoustic front-
ends. One is based on the traditional Mel-frequency Cep-
stral Coefficients (MFCC) obtained from a fast Fourier Trans-
form and the other on the warped minimum variance distor-
tionless response (MVDR). The second front-end replaces the
Fourier transformation by a warped MVDR spectral envelope
[5], which is a time domain technique to estimate an all-pole
model using a warped short time frequency axis such as the
Mel scale. The use of the MVDR eliminates the overemphasis
of harmonic peaks typically seen in medium and high pitched
voiced speech when spectral estimation is based on linear pre-
diction.

For training, both front-ends have provided features every
10 ms. During decoding this was changed to 8 ms after the first
stage. In training and decoding, the features were obtained ei-
ther by the Fourier transformation followed by a Mel-filterbank
or the warped MVDR spectral envelope.

For the MVDR front-end we used a model order of 22 with-
out any filter-bank since the warped MVDR already provides
the properties of the Mel-filterbank, namely warping to the Mel-
frequency and smoothing. The advantage of this approach over
the use of a higher model order and a linear-filter bank for di-
mensionality reduction is an increase in resolution in low fre-
quency regions which cannot be attained with traditionally used
Mel-filterbanks. Furthermore, with the MVDR we apply an
unequal modeling of spectral peaks and valleys that improves



noise robustness, due to the fact that noise is mainly present in
low energy regions.

Both frond ends apply vocal tract length normalization
(VTLN) [6]. For MFCC this is done in the linear domain, for
MVDR in the warped frequency domain. The MFCC front-end
uses 13 cepstral coefficients, the MVDR front-end uses 15. The
mean and variance of the cepstral coefficients were normalized
on a per-utterance basis. For both front-ends seven adjacent
frames were combined into one single feature vector. The re-
sulting feature vectors were then reduced to 42 dimensions us-
ing linear discriminant analysis (LDA).

3. Acoustic Model Training
We trained a variety of phoneme based acoustic models for
the final evaluation system. All of them are left-right Hid-
den Markov Models (HMMs) without state skipping with three
HMM states per phoneme.

We trained acoustic models for two different kinds of
phoneme sets P1 and P2. P1 is a version of the Pronlex
phoneme set which consists of 44 phonemes and allophones
while P2 is a version of the phoneme set used by the CMU
dictionary that consists of 45 phonemes and allophones. We
trained models for all four combinations of the two phoneme
sets and the two acoustic front-ends described in Section 2.

We trained the models on approx. 80h of English EPPS
data provided by RWTH Aachen within the TC-STAR project
[7], 9.8h of TED data [8], and 167h of unsupervised EPPS train-
ing material that had been collected within TC-STAR by RWTH
Aachen but had not been manually transcribed. Transcriptions
for the unsupervised training material were obtained by adapt-
ing an acoustic model of last year’s system on automatic tran-
scriptions provided by RWTH Aachen on that data. We then
decoded the data, using the segmentation provided by RWTH
Aachen.

All models are semi-continuous quinphone systems that use
16000 distributions over 4000 codebooks. They were trained
using incremental splitting of Gaussians training, followed by
2 iterations of Viterbi training. For all models we used one
global semi-tied covariance (STC) matrix after LDA [9] as well
as Vocal Tract Length Normalization. In addition to that fea-
ture space constraint MLLR (cMLLR) speaker adaptive training
[10] was applied on top.

We improved the acoustic models further with the help
of Maximum Mutual Information Estimation (MMIE) training
[11]. We applied MMIE training firstly to the models after the
2 viterbi iterations, and secondly to the models after the FSA-
SAT training, taking the adaptation matrices from the last itera-
tion of the maximum likelihood FSA-training and keeping them
unchanged during the MMIE training.

This all resulted in eight different acoustic models: for each
combination of front-end, MVDR and MFCC, and phoneme set,
P1 and P2, one set of models trained with VTLN plus MMIE,
and one with FSA-SAT plus MMIE. From now on we refer
to these models as P1-MFCC-VTLN, P2-MFCC-VTLN, P1-
MVDR-VTLN, P2-MVDR-VTLN, P1-MFCC-SAT, P2-MFCC-
SAT, P1-MVDR-SAT, and P2-MVDR-SAT.

4. Segmentation and Clustering
For this year’s system we used a different approach than in last
year’s system to segment the input data into smaller, sentence-
like chunks used for recognition. For the purpose of segmen-
tation we performed a fast decoding pass on the unsegmented

corpus #words weights LM1 weights LM2
EPPS transcr 750k 0.12 0.12
EPPS FT 35M 0.42 0.35
Hub4 BN 130M 0.07 0.04
UN 41M 0.02 0.02
EPPS unsup 1.4M 0.08 0.04
Hansard 48M 0.19 0.16
Gigaword 167M 0.10 0.07
Web 643M - 0.20

Table 1: The LM training corpora and interpolation weights

input data in order to determine speech and non-speech re-
gions. Segmentation was then done by consecutively splitting
segments at the longest non-speech region that was at least 0.3
seconds long. The resulting segments had to contain at least
eight speech words and had to have a minimum duration of six
seconds.

In order to group the resulting segments into several clus-
ters, with each cluster, in the ideal case, corresponding to one
individual speaker we used the same hierarchical, agglomera-
tive clustering technique as last year which is based on TGMM-
GLR distance measurement and the Bayesian Information Cri-
terion (BIC) stopping criteria [12]. The resulting speaker labels
were used to perform acoustic model adaptation in the multipass
decoding strategy described in Section 6.

5. Language Model and Test Dictionary
5.1. Language Model

For language model (LM) trainig we used data from the fol-
lowing corpora: the manual transcriptions of the EPPS acoustic
training data (EPPS transcr), the EPPS final text editions (EPPS
FT), Hub4 Broadcast News data (Hub4 BN), the English part of
the UN Parallel Text Corpus v1.0 (UN), the automatic transcrip-
tions of the unsupervised EPPS training data (EPPS unsup), the
ELDA Hansard corpus consisting of U. K. parliament debates
(Hansard), data extracts from the LDC Gigaword corpus (Gi-
gaword), and texts from an inhouse web data collection (Web).
Table 1 gives the sizes of the individual corpora.

For the web data corpus we collected training material from
the World Wide Web. In order to obey the cut-off date of May
31st the collection was done in the last week of May. The col-
lection was performed with the help of web-collection and filter
scripts provided by the University of Washington[13]. For that
purpose we built 10k queries which were random shuffles of
784 topic ngrams and 400 general n-gram phrases. The topic n-
grams were extracted from the EPPS final text editions by keep-
ing the most frequent 4-grams and 3-grams (not in the 4-grams)
not containing any stopwords, hesitations, numbers, or dates.
The purpose of the general n-grams is to cover speaking style
and were therefore extracted from the EPPS verbatim transcrip-
tions by keeping the most frequent 4-grams and 3-grams (not in
the 4-grams) excluding topic words. After reducing redundant
webpages and applying a standard text postprocessing filter an
amount of 643M words remained.

With the help of the SRI Language Modeling Toolkit [14]
we trained separate 4-gram LMs for each corpus. The LMs
use modified Kneser-Ney smoothing and interpolation of dis-
counted n-gram probability estimates with lower-order esti-
mates. By interpolating the invididual models we created two



stage/pass technique AM/pass adapted on dev06 eval06 eval07
1a Decoding P1-MFCC-VTLN incr. 13.4% 11.2% 12.5%
1b Decoding P1-MVDR-VTLN incr. 13.2% 11.3% 12.6%
1c Decoding P2-MFCC-VTLN incr. 13.0% 11.0% 12.3%
1d Decoding P2-MVDR-VTLN incr. 12.6% 11.3% 13.1%
1-1 CNC 1a,1c – 11.8% 10.2% 11.4%
1-2 CNC 1b,1d – 11.8% 10.2% 11.5%
2a Decoding P1-MFCC-SAT 1-2 11.4% 9.7% 11.0%
2b Decoding P1-MVDR-SAT 1-1 11.8% 9.5% 10.5%
2c Decoding P2-MFCC-SAT 1-2 11.1% 9.0% 10.5%
2d Decoding P2-MVDR-SAT 1-1 11.2% 9.2% 10.8%
2 CNC 2a,2b,2c,2d – 10.4% 8.5% 9.5%
3a Decoding P1-MFCC-SAT 2 10.9% 8.6% 10.2%
3b Decoding P1-MVDR-SAT 2 11.1% 8.9% 10.1%
3c Decoding P2-MFCC-SAT 2 10.8% 8.4% 10.0%
3d Decoding P2-MVDR-SAT 2 11.0% 8.6% 9.8%
3 CNC 3a,3b,3c,3d – 10.0% 8.0% 9.2%

Table 2: The individual stages and passes in the decoding scheme, giving the acoustic model (AM) used, or which outputs were
combined respectively, the output adapted on, and WERs on the 2006 development, 2006 evaluation, and 2007 evaluation sets

language models that we used in our system.
Our first language model (LM1) was the result of the inter-

polation of all corpora mentioned above, except the web data
LM. The interpolation weights were tuned on the 2006 EPPS
eval data by minimizing the perplexity of the model. The re-
sulting LM reached a perplexity of 83 on the 2006 EPPS devel-
opment set, 89 on the 2006 evaluation set, and 85 on the 2007
evaluation set.

Our second language model (LM2) used the web data lan-
guage model in addition. The interpolation weights were cho-
sen manually as a trade off between tuning on the 2005 EPPS
development set, the 2006 EPPS development set, and the 2006
evaluation set. The resulting model has a perplexity of 78 on
the 2006 EPPS development set, 83 on the 2006 evaluation set,
and 82 on the 2007 evaluation set.

5.2. Test dictionary

The test dictionary remained unchanged to last year’s
dictionary[3]. It was built by using all words from the EPPS
transcripts and all words with more than three occurrences from
the EPPS final text editions. Pronuciations missing from the in-
tial dictionaries were created either manually or automatically
with the help of Bill Fisher’s tool [15] for P1 and Festival [16]
for P2 respectively. This resulted in a case sensitive OOV rate of
0.43% on the 2006 EPPS development set, 0.47% on the 2006
evaluation set, and 0.45% on the 2007 evaluation set. All words
were mapped to British English spelling.

6. Decoding Strategy and Results
Decoding within our recognition system was performed in three
stages. For the first two stages we used the language model
LM1, that is the language model without training material col-
lected from the web, and for the third stage we switched to
language model LM2 that includes the web data. The acous-
tic models of the second and third stage were adapted on the
output(s) from the previous stage using Maximum Likelihood
Linear Regression (MLLR) [17], Vocal Tract Length Normal-
ization (VTLN) [6], and feature-space constrained MLLR (cM-
LLR) [10]. For the estimation of the cMLLR transformation
matrices we used the SAT models before the application of the

MMIE training. For the estimation of the other transformations
we used the models after the MMIE training and kept the cM-
LLR matrices fix. For the second and third stage the frame shift
during recognition was changed to 8ms as mentioned before.

In the first stage we used the acoustic models P1-MFCC-
VTLN, P2-MFCC-VTLN, P1-MVDR-VTLN, P2-MVDR-
VTLN. The resulting word lattices of P1-MFCC-VTLN and
P2-MFCC-VTLN were then combined via confusion network
combination to the output 1-1, and the lattices from P1-MVDR-
VTLN and P2-MVDR-VTLN were combined to output 1-2. In
this first stage we adapted the acoustic models using incremen-
tal VTLN and incrmental fMLLR on a per speaker basis.

For the second stage the MVDR SAT systems for the
phoneme sets P1 and P2 were adapted on 1-1, while the MFCC
SAT systems for P1 and P2 were adapted on 1-2. The resulting
lattices from the second stage were then combined to a single
output using CNC.

In the third stage the same acoustic models as in the second
stage were then adapted on that output and the results of the
recognition runs were combined to the final out, again using
CNC. This final sytem yielded a word error rate of 10.2% on
the 2006 EPPS development set (dev06), of 8.3% on the 2006
evaluation set (eval06), and of 9.2% on the 2007 evaluation set
(eval07). Tabel 2 shows the word error rates of the individual
recognition systems on these sets in the different stages in detail.

AM dev2006 eval2006 eval2007
LM1 LM2 LM1 LM2 LM1 LM2

3a 11.1% 10.9% 9.4% 8.6% 10.7% 10.2%
3b 11.4% 11.1% 9.2% 8.9% 10.3% 10.1%
3c 10.9% 10.8% 8.7% 8.4% 10.2% 10.0%
3d 10.9% 11.0% 8.8% 8.6% 10.1% 9.8%
CNC 10.2% 10.0% 8.3% 8.0% 9.4% 9.2%

Table 3: Comparison of the language model w/o (LM1) and
with web data (LM2) on the third stage of the decoding



7. Comparative Results
7.1. Segmentation

We examined the improvements from the new segmentation by
taking the P1-MFCC-VTLN from the first stage of the evalua-
tion system and comparing its performance on the old and the
new segmentation. With the new segmentation the WER drops
by 0.5% abs. from 13.9% to 13.4% on dev06, and by 0.6% from
13.1% to 12.5% on eval07.

7.2. Unsupervised Training Material

For measuring the performance gain from the unsuperviced
training material we utilized a system from an intermediate
stage in our system development. The system consists of 4000
models over 4000 codebooks and was trained with phoneme-
set P1 and the MFCC front-end as described above, but without
MMIE training. The system was trained once without and once
with the unsupervised training material. Without the unsuper-
vised material the system reaches a WER of 14.9% on the 2006
development set, of 12.5% on the 2006 evaluation set, and of
14.3% on the 2007 evaluation set. When we include the unsu-
pervised training material the word error rates drops consider-
ably to 14.1% on dev06, 11.9% on eval06, and 13.7% on eval07.

7.3. Web Data

In order to determine the influence of the Web training material
on the performance of the system we repeated the third stage of
our evaluation system with the same language model than in the
second stage, i.e. the language model without the web material.
After the confusion network combination of the recognizer out-
puts the word error rate on eval07 increases by 0.2% absolute to
9.4%. Tabel 3 shows WERs in detail.

8. Conclusions
In this paper we have described our English speech recogni-
tion system with which we participated in the third TC-STAR
evaluation campaign in spring of 2007 for transcribing Euro-
pean Parliamentary Plenary Sessions. On the 2007 evaluation
set our system yields a WER of 9.2%. The main modification’s
over last year’s system are the application of a hypotheses based
segmentation to the input signal, the utilization of unsupervised
training material, a modification of the cross-system adaptation
and combination scheme, and the incorporation of web based
training material into the language model.
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